首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Summary The interface crack problem for a piezoelectric bimaterial based on permeable conditions is studied numerically. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical and electrical loads, the complex stress intensity factor for an interface crack is obtained. The influence of the applied loads on the electromechanical fields near the crack tip is also studied. For a particular case of a short crack with respect to the bimaterial size, the numerical results are compared with the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.One author (V.G.) gratefully acknowledges the support provided by the Alexander von Humboldt Foundation of Germany.accepted for publication 7 June 2004  相似文献   

3.
4.
采用数值方法进行断裂力学分析时,裂纹尖端奇异区域处理的好坏直接关系到最终断裂力学参数的求解精度。与传统均匀介质不同,复合材料界面裂纹渐近位移和应力场表现出剧烈的振荡特性,许多用于表征经典的平方根和负平方根物理场渐近性的传统方法也因此失效。论文提出了一种改进的广义有限差分法,该方法基于多元函数泰勒级数展开和移动最小二乘法的思想,将节点变量的各阶导数由相邻点集函数的加权线性累加来近似,具有无网格、无数值积分、数据准备简单、稀疏矩阵快速求解等优点。为提高该方法求解断裂力学问题的计算精度和数值稳定性,论文引入了裂尖奇异区域局部点簇的自动创建技术和一种基于局部点簇几何尺寸的矩阵正则化算法。数值算例表明,所提算法稳定,效率高,在不增加计算量的前提下,显著提高了裂尖近场力学参量和断裂力学参数的求解精度和数值稳定性。  相似文献   

5.
瓷修复体界面断裂行为的模拟实验研究   总被引:1,自引:0,他引:1  
方如华  王冬梅 《力学季刊》2002,23(3):302-310
本文利用云纹干涉法和云纹干涉--有限元混合法,对瓷修复体的模拟双材料模型界面断裂问题进行了实验研究。用云纹干涉和数字错位云纹干涉法测量带边裂纹的双材料四点简支梁在剪切作用下界面表面的剪应变分布及界面两侧局部表面的位移场,实验表明,由于界面两两侧材料力学性质不同,表现出界面剪切断裂问题的非称性和裂尖附近复合型断裂的特点;用云纹干涉法和有限元法相结合的混合法对粘接界面角点应力奇异性进行研究,并对角点附近应力应变场作了分析,得到了应力奇异指数与边界楔角,载荷的关系,证明了用界面应力强度因子Kf来描述界面端部区域应力分布的公式,并得到了双材料界面端部区域的应力应变分布情况。本文的实验结果为进一步研究口腔金瓷修复体界面的优化设计提供了基础,同时也说明云纹干涉法对于双材料界面断裂行为的研究是有效的。  相似文献   

6.
脆性材料在双向应力下的断裂实验与理论分析   总被引:5,自引:0,他引:5  
包亦望 《力学学报》1998,30(6):682-689
研究了脆性材料在双向应力下的断裂特性和失效机理,特别是在平行于裂纹的应力对临界断裂参数的影响方面进行了实验上和理论上的研究.采用玻璃、陶瓷等脆性材料进行了平面双向拉伸和单向拉伸试验,并对实验结果进行比较.观测直通裂纹的启裂和扩展过程,证明了双向应力对裂纹驱动力有明显影响,讨论了裂纹扩展的应变准则.  相似文献   

7.
The effects of combining functionally graded materials (FGMs) of different inhomogeneous property gradients on the mode-3 propagation characteristics of an interfacial crack are numerically investigated. Spontaneous interfacial crack propagation simulations were performed using the newly developed spectral scheme. The numerical scheme derived and implemented in the present work can efficiently simulate planar crack propagation along functionally graded bimaterial interfaces. The material property inhomogeneity was assumed to be in the direction normal to the interface. Various bimaterial combinations were simulated by varying the material property inhomogeneity length scale. Our parametric study showed that the inclusion of a softening type FGM in the bimaterial system leads to a reduction in the fracture resistance indicated by the increase in crack propagation velocity and power absorbed. An opposite trend of increased fracture resistance was predicted when a hardening material was included in the bimaterial system. The cohesive tractions and crack opening displacements were altered due to the material property inhomogeneity, but the stresses ahead of the cohesive zone remained unaffected.  相似文献   

8.
This paper presents a preliminary assessment and qualitative analysis on fracture criterion and crack growth in metal powder compact during the cold compaction process. Based on the fracture criterion of granular materials in compression, a displacement based finite element model has been developed to analyse fracture initiation and crack growth in metal powder compact. Approximate estimation of fracture toughness variation with relative density is established in order to provide the fracture parameter as compaction proceed. A single crack initiated from the boundary of a multi-level component made of iron powder is considered in this work. The finite element simulation of the crack propagation indicates that shear crack grows during the compaction process and propagates in the direction of higher shear stress and higher relative density. This also implies that the crack grows in the direction where the compaction pressure is much higher, which is in line with the conclusion made by previous researchers on shear crack growth in materials under compression. In agreement with reported work by previous researchers, high stress concentration and high density gradient at the inner corner in multi-level component results in fracture of the component during preparation.  相似文献   

9.
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.  相似文献   

10.
An engineering approach for evaluating the shear-mode (Mode-II) fracture toughness of wood–wood and wood-composite bonded interfaces is presented. A tapered beam on elastic foundation model is developed to analyze and design a linear tapered end-notched flexure (TENF) specimen for fracture tests of bonded interfaces. The elastic foundation model is verified numerically by finite element analysis and experimentally by compliance calibration tests, which demonstrate that the present model can accurately predict the compliance and compliance rate-change of the specimen, and with proper design, an approximate constant rate of compliance change with respect to crack length can be achieved. The proposed TENF specimen can be used for Mode-II fracture toughness evaluations with reasonable confidence in the linearity of compliance crack-length relationship. The fracture of wood–wood and wood-composite bonded interfaces under Mode-II loading is experimentally evaluated using the proposed TENF specimen, and the corresponding values of critical strain energy release rate are obtained. The modeling technique and testing method presented can be efficiently used for characterization of Mode-II fracture of bonded bimaterial interfaces.  相似文献   

11.
随着金属材料大壁厚结构件在工程中的广泛应用,对其断裂韧度的厚度效应研究具有重要的科学意义和工程价值.该研究基于有限元和实验相结合的方法,对金属材料断裂韧度的厚度效应进行预测.首先,通过一组薄壁厚金属材料标准三点弯曲试验得到试样失效时的临界载荷值,并利用内聚力模型与基于虚拟裂纹闭合技术的裂纹扩展模拟方法得到裂纹扩展时的单元临界能量释放率.随后,以此临界能量释放率作为裂纹扩展的启裂准则门槛值,通过有限元计算得到不同试样厚度下裂纹启裂时的裂尖断裂参数随着厚度的变化规律.最后,为了验证有限元模拟结果的准确性,该研究进行了另外两组不同厚度下三点弯曲试样的断裂韧度试验,并将试验结果与有限元结果进行了对比,验证了有限元所模拟的断裂韧度厚度效应的准确性.该研究旨在,通过薄壁厚三点弯曲试样的实验结果结合有限元模拟工作,即可实现金属材料断裂韧度的整个厚度效应曲线,为任意厚度下金属材料断裂韧度预测提供一种可靠的研究方法,有益于缩减试验成本,为大壁厚工程结构件的失效预测提供依据.  相似文献   

12.
The problem of a crack perpendicularly approaching a bimaterial interface is examined using both global and localapproaches to fracture. The global approach is based on the J-integral with a second parameter, Q, which scales the stress triaxiality ahead of the crack. The local approach is based on either brittle fracture(Beremin model ) or ductile fracture (Rice and Tracey model ). In the first case, the Weibull stress over the plasticzone is calculated. In the second case, the void growth rate is calculated at the tip of the crack over a representativevolume (generally associated with a characteristic length of the material ). After a brief summary of each approach,the results for a crack near an elastically homogeneous, plastically mismatched interface are presented. Thebehaviour of the bimaterial is expressed in relation to the behavior of the homogeneous material. It is shown thatthere is an effect on the crack behavior which depends on the direction of crack propagation, i.e. from the hardermaterial to the softer material or vice versa. This effect is examined as a function of change in yield strength ratioand hardening exponent, n. For the case of brittle fracture, the effect of changing the Weibull modulus, m, is also examined. The models based on the local approach show that both stress- and strain-controlledfracture mechanisms must be accounted for. This implies the necessity of using the two parameters J and Q in the global approach. This is due to the fact that the stress–strain fields ahead of the crack tip areaffected by the nature of the second material.  相似文献   

13.
For crack growth along an interface between two adjacent elastic–plastic materials in a layered solid, the resistance curve behaviour is analysed by approximating the behaviour in terms of a bi-material interface under small scale yielding conditions. Thus, it is assumed that the layers are thick enough so that the extent of the plastic regions around the crack tip are much smaller than the thickness of the nearest layers. The focus is on the effect of initial residual stresses in the layered material, or on T-stress components induced during loading. The fracture process is represented in terms of a cohesive zone model. It is found that the value of the T-stress component in the softer material adjacent to the interface crack plays a dominant role, such that a negative value of this T-stress gives a significant increase of the interface fracture toughness, while a positive value gives a reduction of the fracture toughness.  相似文献   

14.
The symmetric frequency domain problem for two ideally bonded elastic half-spaces with a perpendicular plane crack is considered. It is reduced to the boundary integral equation (BIE) with integration over the limited crack region. The contact conditions on the bimaterial interface are satisfied identically in the initial stage of obtaining the equation. After boundary element solution of the equation, the stress concentration in the vicinity of a penny-shaped crack under time-harmonic loading of constant amplitude is studied. The mode I stress intensity factors as functions of angular coordinate of a crack front point and wave number for various relations between the material parameters are computed. The crack depth relative to the bimaterial interface is determined, when the effect of the material dissimilarity on the crack can be neglected.  相似文献   

15.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

16.
Motivated by the existence of a universal singular stress field at bimaterial interface corners, a fair amount of work has been performed to support the use of the corresponding critical stress intensities to correlate fracture initiation. The approach is in the spirit of interface fracture mechanics but applicable to a different class of problems, specifically, when a crack does not previously exist (or cannot be detected, at least economically), and when subsequent crack propagation does not necessarily occur along the interface. Here we further progress toward the development, understanding, and application of the approach, both experimentally and theoretically, for a series of silicon/glass anodically bonded structures. To this end we designed and fabricated two series of silicon/glass anodically bonded bimaterial specimens with different interface corner geometries that commonly arise from different silicon etching technologies. Offset three-point flexure tests were performed that resulted in brittle fracture that initiated at the interface corner. From a rigorous stress analysis at the interface corner, we determined the order of the stress singularities and the angular variation of the stress fields. We computed the corresponding stress intensities via full-field finite element analyses of the silicon/glass specimens loaded in offset three-point flexure. Measured fracture data show that although the failure stress varies significantly with bond size, the corresponding critical stress intensity of the dominant mode is constant, thus providing support for its use as a fracture initiation criterion. In the light of both the stress analysis and the measured fracture data, we discuss the effect of mode mixity (loosely shearing versus opening) and show that it has little influence on the results for the specimens and loading considered in this study. Via an idealized model of a small crack, either interfacial or extending into one of the adherends, we study the effects of geometrical perturbations at the interface corner on the stress state, and discuss implications for fracture analysis and interpretation of fracture data. We also explore the prediction of the crack initiation angle and achieve reasonable success with a simple criterion based on the maximum circumferential stress near the uncracked interface corner.  相似文献   

17.
IntroductionGenerallyspeaking ,acrackinviscoelasticmaterialswillgrowinsomeunknownspeedeveniftheappliedloadisquasistatic,thusthemaindifficultyisinducedindervingtheenergyreleaserate .Knowledgeoftheconditiongoverningthedelaminationincompositelaminateswithviscoelasticlayersisofparamountimportanceinpracticalapplications.Forexample,inplasticencapsulatedICpackages,theinterfacialdelaminationbetweentheSilicondieandviscoelasticepoxymoldingcompoundunderthethermalloadingisthemainfailuremodeofthestructure…  相似文献   

18.
The asymptotic problem of a kinked interfacial crack in dissimilar anisotropic materials under antiplane deformation is investigated. The linear transformation method for the problem of the anisotropic bimaterial with a straight interface is proposed. The stress intensity factor for the kinked interfacial crack in the anisotropic composite is obtained from the solution of the transformed problem of the kinked interfacial crack in the isotropic bimaterial based on the linear transformation method. The effects of the material parameters as well as the kink angle on the stress intensity factor are discussed from numerical results of the stress intensity factor. The finite element analysis is carried out to verify the stress intensity factor obtained by using the linear transformation. The influence of the material orientations on the stress intensity factor is investigated for the kinked crack in the bimaterial consisting of dissimilar inclined orthotropic materials.  相似文献   

19.
The J_2-integral induced from the interface of bimaterial solids(J_2~(interface))is stud-ied by numerical method.First,the effect on the J_2-integral induced from the interface is verysignificant in bimaterial solids,which is inherently related to that induced from the subinterfacecracks.Moreover,it can be concluded that either the first or the second component of the J_k-vector is always equal to zero when the contour encloses both the cracks and the whole interfacein bimaterial solids.Secondly,it can also be concluded that the interface does produce significanteffect on the J_2-integral induced from the subinterface cracks(J_2~(sub))in bimaterial solids.Thiseffect depends on the geometry of the crack arrangement,which is corresponding to the differentinteraction effect among the cracks and the interface.Moreover,the interface effect on the J_2~(sub)can be neglected when the distance from the crack center to the interface is large enough,whichreveals that the bimaterial solids can be regarded as homogenous solids in fracture analysis whenthe subinterface crack is far enough from the interface.Three examples are given in this paper.  相似文献   

20.
白桦材断裂韧度的各向异性性质   总被引:1,自引:0,他引:1  
木材可视为正交各向异性材料,表征木材抵抗裂纹扩展能力的断裂韧度硒。是木材的基本力学性质之一,它具有明显的各向异性.对白桦材试样断裂韧度硒。测试结果表明,LT试样的断裂韧度明显高于TL,TR试样的断裂韧度,TL和TR试样的断裂韧度相接近.无论哪种试样类型,起裂均发生在裂纹尖端.TL,TR试样裂纹扩展方向与原裂纹初始方向一致,LT试样与前两不同,裂纹沿着几乎平行于纤维的方向扩展.并且含水率对各个方向木材断裂韧度的影响趋势是一致的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号