首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate theoretically that the negatively chirped femtosecond laser pulse can be spectrally narrowed by cross-phase modulation. The new view is well supported by numerical simulation. The negative chirp method in fibers might be useful in all optical wavelength switching applications.  相似文献   

2.
Femtosecond optical pulses generated from a synchronously pumped fiber Raman soliton laser (FRASL) have been shown to have large excess noise and high background light (i.e., the pedestal) levels. In this paper, to improve the FRASL, the operation characteristics of the FRASL are investigated both theoretically and experimentally. It is shown that real femtosecond soliton oscillation in the FRASL can be obtained only when the soliton self-frequency shift (SSFS) effect in the fibers is suppressed and proper choices of both the Stokes oscillation wavelength and the pump power level are required for the SSFS suppression in the FRASL. By using a tunable all-fiber Raman ring laser, optical pulses as short as 400 fs with a low white AM noise level of -120 dBc / Hz have been generated from the compact FRASL with SSFS suppression. Based on the theoretical analyses, we propose to use an intracavity saturable absorber to prevent the generation of high-level Stokes background light in the FRASL, and the feasibility of this method is shown by numerical simulations.  相似文献   

3.
The controllable periodic M-shape gratings are fabricated on the surface of silica glass by three coplanar interfering beams from a single femtosecond pulse. The configuration of the M-shape periodic structure is characterized by optical microscopy and atomic force microscopy. The experimental results and the theoretical simulation show that the period and the modulation depth ratio between the neighboring grooves of the fabricated gratings can be controlled by adjusting the collision angles and pulse energy of the three beams, respectively.  相似文献   

4.
Results of the wavelet analysis of an extremely short femtosecond pulse propagating in a single-mode optical fiber with a shifted dispersion characteristic are described. The advantages of wavelet analysis as compared with Wigner analysis are shown. In particular, wavelet analysis allows improving the spectral resolution of the studied pulse in the high-frequency range.  相似文献   

5.
A controllable optical delay line using a Brillouin optical fiber ring laser is demonstrated and a large timedelay is obtained by cascading two optical fiber segments. In experiment, a single-mode Brillouin opticalfiber ring laser is used to provide Stokes wave as probe wave. We achieve a maximum tunable time delayof 61 ns using two cascading optical fiber segments, about 1.5 times of the input probe pulse width of 40ns. In the meantime, a considerable pulse broadening is observed, which agrees well with the theoreticalprediction based on linear theory.  相似文献   

6.
冯璐  那日  杨体强  冯启元 《光学技术》2001,27(4):376-378
从麦克斯韦方程组出发 ,推导出了具有几个光振荡周期的飞秒激光脉冲在非线性光纤中传输的方程和非线性光纤的折射率。给出了描述具有几个光振荡周期的飞秒激光脉冲在非线性光纤中传输方程的解。研究了在非线性光纤中自相位调制导致具有几个光振荡周期的飞秒激光脉冲频谱展宽 (脉宽压缩 )的详细物理过程。研究了非线性光纤中飞秒光孤子产生的条件  相似文献   

7.
Harmonics generated by an intense femtosecond Gaussian laser pulse normally incident on a spiral-shaped thin foil target were studied.By using two-dimensional(2D) particle-in-cell(PIC) simulation,we observed evident odd harmonics signals in the reflection direction and found that the reflected field has a helical structure determined by the target shape.This method provides a new way to generate an intense ultraviolet vortex with high-order topological charge by use of ultrahigh intense laser-driven harmonics.  相似文献   

8.
A femtosecond all-fiber laser source incorporating a cw mode-locked Yb-doped silica fiber oscillator and amplifier has been used to synchronously pump an optical parametric oscillator based on periodically poled lithium niobate. The signal output, consisting of 330-fs pulses at a 54-MHz repetition rate and average powers up to 90 mW, was tuned from 1.55 to 1.95microm , with a corresponding idler range of 2.30-3.31microm .  相似文献   

9.
High-peak-power laser systems are based on the chirped pulse amplification (CPA) technique. CPA laser system needs a mode-locked laser oscillator for stable ultrashort pulse laser generation. We report a single-mode fiber CPA system which consists of stable mode-locked Yb-doped fiber laser oscillator with a wide tuning range, chirped fiber Bragg grating stretcher, and two Yb-doped fiber amplifiers. The single-mode fibers can generate high-quality and single-mode beams which are stable for long time.  相似文献   

10.
Single-mode diodes enable a particularly simple, compact and effective pumping of solid-state laser devices for many specialized applications. We investigated a single-mode, 300-mW laser diode for pumping at 935 nm a Yb:YAG laser passively mode-locked by a semiconductor saturable absorber. Relatively short pulse generation (156 fs), tunable across 1033–1059 nm has been demonstrated. An optical-to-optical efficiency of about 28% has been obtained with 320 fs long pulses. Therefore, contrarily to what previously believed, compact diode-pumped ultrafast Yb:YAG oscillators can reliably and efficiently deliver pulses in the range of ≈ 100–200 fs with few tens of mW, which are very appealing for bio-diagnostics and amplifier seeding applications.  相似文献   

11.
Three aspects of coupling to Fabry-Perot cavities used in optical frequency standards are discussed: the use of a single-mode optical fiber to maintain coupling stability while improving vibration isolation of the cavity, the required stability of the coupling geometry, and the phase and polarization variations resulting from fiber movement. Optical fiber coupling should be useful when laser linewidths and stabilities at the Hertz level are desired.  相似文献   

12.
Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly(?-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.  相似文献   

13.
The structural transformation dynamics of single-crystalline indium phosphide (InP) irradiated with 150 fs laser pulses at 800 nm has been investigated by means of time-resolved reflectivity measurements covering a time window from 150 fs up to 500 ns. The results obtained show that for fluences above a threshold of 0.16 J/cm2 thermal melting of the material occurs on the timescale of 1–2 ps. The evolution of the reflectivity on a longer timescale reveals the reflectivity of the liquid phase and shows resolidification times typically around 10–30 ns after which an amorphous layer several tens of nanometers thick is formed on the surface. This amorphous layer significantly alters the optical properties of the surface and finally leads to a reduced ablation threshold for subsequent laser pulses. Single-pulse ablation at higher fluences (>0.23 J/cm2) is preceded by an ultrafast phase transition (non-thermal melting) occurring within 400 fs after the arrival of the pulse to the surface. PACS 79.20.Ds; 78.47.+p; 64.70.-p  相似文献   

14.
We report on an all-normal-dispersion mode-locked fiber laser based on a large-mode-area Yb-doped microstructure fiber and using a high nonlinear modulation depth semiconductor saturable absorber mirror. The laser delivers 3.3 W of average output power with positively chirped 5.5 ps pulses at a center wavelength of 1033 nm. The pulse repetition rate is 46.4 MHz, which results in an energy per pulse of 71 nJ. These pulses are extracavity dechirped down to 516 fs by using bulk gratings. The average power of the dechirped pulses is 2.3 W, which corresponds to a peak power of more than 96 kW.  相似文献   

15.
Ilday FO  Wise FW  Sosnowski T 《Optics letters》2002,27(17):1531-1533
A stretched-pulse fiber laser with a nonlinear optical loop mirror (NOLM) that produces 100-fs pulses with 1-nJ energy is demonstrated. These results constitute a 30-fold increase in pulse energy over previously reported femtosecond fiber lasers with a NOLM. Compared with previous stretched-pulse lasers, this laser offers a cleaner spectrum and improved stability, with comparable pulse duration and energy. Implications for the construction of truly environmentally stable lasers are discussed.  相似文献   

16.
The supercontinuum generation has been obtained in short conventional dispersion-shifted fiber using the femtosecond pulses from a passively mode-locked erbium-doped fiber laser. In the experiment, the supercontinuum spectrum of >300 nm has been observed by injecting 70-fs pulses into a several-meter dispersion-shifted fiber. The simulation of the evolution in the fiber shows that spectral broadening arises from soliton dynamics when pumping using femtosecond pulses in the anomalous group velocity dispersion regime of the fiber.  相似文献   

17.
Chong A  Renninger WH  Wise FW 《Optics letters》2007,32(16):2408-2410
We report a study of the scaling and limits to pulse energy in an all-normal-dispersion femtosecond fiber laser. Theoretical calculations show that operation at large normal cavity dispersion is possible in the presence of large nonlinear phase shifts, owing to strong pulse shaping by spectral filtering of the chirped pulse in the laser. Stable pulses are possible with energies of tens of nanojoules. Experimental results from Yb-doped fiber lasers agree with the trends of numerical simulations. Stable and self-starting pulses are generated with energies above 20 nJ, and these can be dechirped to <200 fs duration. Femtosecond pulses with peak powers near 100 kW are thus available from this simple and practical design.  相似文献   

18.
Laser satellites are detected in the emission spectra of magnesium and aluminum plasmas produced by femtosecond laser pulses. This is made possible by the realization of picosecond time resolution in a high-luminosity x-ray spectrograph with a spherically curved mica crystal. The temporal characteristics of these newly recorded spectral lines show unequivocally that they are formed as a result of nonlinear processes. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 7, 454–459 (10 October 1997)  相似文献   

19.
We have fabricated long-period fiber gratings by use of a novel technique using focused irradiation of infrared femtosecond laser pulses. We investigate the thermal stability of the fabricated fiber gratings. The values of the loss peak wavelength and the transmittance of the fiber gratings after heat treatment below 500 degrees C are the same as initial values before heat treatment. The fiber gratings that were fabricated by this technique have a high resistance to thermal decay. We propose that this technique will be useful for fabrication of fiber gratings with a superior aging characteristic.  相似文献   

20.
Using the Fourier technique in combination with the Mie theory, we study numerically the spatiotemporal evolution of the intensity of the internal optical field inside micron-sized weakly absorbing spherical particles upon diffraction by these particles of a femtosecond laser field. A number of specific features of the dynamics of the spatial intensity distribution of the femtosecond pulses inside the particles are found to depend on the pulse width, the shape of the laser beam, the size of the particles, and the geometry of their irradiation. It is shown that, under conditions of nonstationary diffraction, the internal optical field is usually excited in a resonance way, with the eigenfrequencies of one or several high-Q resonance modes of the particle falling into the central part of the original pulse spectrum. This causes a time delay of the light in the particle and a reduction of the absolute maximum in the time dependence of the internal field intensity as compared with a stationary regime. The greatest reduction of the peak occurs at exact resonance. In this case, the decrease in the peak intensity may reach several orders of magnitude. Irradiation of a particle by a narrow Gaussian beam of femtosecond duration directed toward the particle center enhances the internal field intensity as compared with the case of near-edge incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号