首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the catalytic properties of a cytochrome P450 immobilised onto an electrode surface are improved by means of the molecular Lego approach.  相似文献   

2.
Cyclic voltabsorptometry is used for the first time to distinguish and characterize electrochemically the active (P450) and inactive (P420) forms of cytochromes P450 immobilized on an electrode during voltammetry experiments. This was achieved by using the heme domain (BMP) of the bacterial cytochrome P450 BM3 from Bacillus megaterium (CYP102A1) immobilized on mesopouros tin-oxide (SnO2) electrodes. We demonstrate that the formation of either the P450 form or the P420 one can be obtained by modifying the mesoporous electrode surface with polycations with different properties such as polyethylenimmine (PEI) and polydiallyldimethylammonium chloride (PDDA). Potential step spectroelectrochemistry allowed measurement of reduction potentials of the active P450 form. Values of -0.39+/-0.01 V and -0.58+/-0.01 V (both versus Ag/AgCl) were calculated for the active P450 form immobilized on the BMP/PDDA-SnO2 and BMP/PEI-SnO2 electrodes, respectively. The cyclic voltabsorptometric experiments showed how, when both the active and inactive forms are present on the PEI film, the inactive P420 species tends to dominate the cyclic voltammetric signal.  相似文献   

3.
Cytochrome P450 BM3 is a versatile enzyme, which holds great promise for applications in biocatalysis and biomedicine. We here report on the generation of a hybrid DNA-protein device based on the two subdomains of BM3, the reductase domain BMR and the porphyrin domain BMP. Both subdomains were fused genetically to the HaloTag protein, a self-labeling enzyme, allowing for the bioconjugation with chloroalkane-modified oligonucleotides. The subdomain-DNA-chimeras could be reassembled by complementary oligonucleotides, thus leading to reconstitution of the monooxygenase activity of BM3 holoenzyme, as demonstrated by conversion of the reporter substrate 12-pNCA. Arrangement of the two chimeras on a switchable DNA scaffold allowed one to control the distance between both subdomains, as indicated by the DNA-dependent activity of the holoenzyme. Furthermore, a switchable chimeric device was constructed, in which monooxygenase activity could be turned off by DNA strand displacement. This study demonstrates that P450 BM3 engineering and strategies of DNA nanotechnology can be merged to open up novel ways for the development of novel screening systems or responsive catalysts with potential applications in drug delivery.  相似文献   

4.
We recently reported conversion of cytochrome P450 BM-3, a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient alkane hydroxylase by directed evolution [Nat. Biotechnol. 2002, 20, 1135]. P450 BM-3 mutant 139-3 exhibited high activity towards a variety of fatty acid and alkane substrates, including C3-C8 alkanes. We report here that mutant 139-3 is also active on benzene, styrene, cyclohexene, 1-hexene, and propylene. Benzene is converted to phenol, while styrene is converted to styrene oxide. Propylene oxidation generates only propylene oxide, but cyclohexene oxidation produces a mixture of cyclohexene oxide (85%) and 2-cyclohexene-1-ol (15%), and 1-hexene is converted to the allylic hydroxylation product, 1-hexene-3-ol. Initial rates of NADPH oxidation for 139-3 in the presence of the substrates greatly (17- to >100-fold) surpass the wild-type in all cases. However, NADPH consumption is only partially coupled to product formation (14-79%). This cytochrome P450 epoxidation catalyst is a suitable starting point for further evolution to improve coupling and activity.  相似文献   

5.
We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present. Infrared absorption spectra of the BM3 FeII-CO complex in DDAB dispersions feature a time-dependent shift of the carbonyl stretching frequency from 1950 to 2080 cm(-1). Voltammetry of BM3-DDAB films on graphite electrodes gave the following results: FeIII/II E(1/2) at -260 mV (vs SCE), approximately 300 mV positive of the value measured in solution; DeltaS degrees (rc), DeltaS degrees , and DeltaH degrees values for water-ligated BM3 in DDAB are -98 J mol(-1) K(-1), -163 J mol(-1) K(-1), and -47 kJ mol(-1), respectively; values for the imidazole-ligated enzyme are -8 J mol(-1) K(-1), -73 J mol(-1) K(-1), and -21 kJ mol(-1). Taken together, the data suggest that BM3 adopts a compact conformation within DDAB that in turn strengthens hydrogen bonding interactions with the heme axial cysteine, producing a P420-like species with decreased electron density around the metal center.  相似文献   

6.
The cytochrome P450 superfamily of monoxygenases are highly relevant for pharmaceutical, environmental and biocatalytical applications. The binding of a substrate to their catalytic site is usually detectable by UV-vis spectroscopy as a low-to-high spin state transition of the heme iron. However, the discovery of potential new substrates is limited by the fact that some compounds do not cause the typical spin-shift even if they are oxidised by P450 enzymes. Here we report a fluorescence-based method able to detect the binding of such substrates to the heme domain of cytochrome P450 BM3 from Bacillus megaterium. The protein was labeled with the fluorescent probe N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-Yl)-ethylenediamine (IANBD). Arachidonic and lauric acids are substrates of P450 BM3 and were used to validate the method, as their binding can be detected both by a spin-shift of the Soret peak from 419 to 397 nm and by the fluorescence change of the labelled protein. The fluorescence emission of the probe linked to the protein increased by a value corresponding to 121 ± 9% and 52 ± 5% with respect to the initial one, upon titration with arachidonic or lauric acids respectively. The dissociation constants were calculated by both UV-vis and fluorescence spectroscopy. Three drugs, propranolol, chlorzoxazone and nifedipine, known to be oxidized by P450 BM3 and that bind without causing spin-shift, were also tested and the fluorescence emission of IANBD was found to decrease by 29 ± 5%, 21 ± 2% and 23 ± 3%, respectively, allowing the measurement of their dissociation constants.  相似文献   

7.
Peroxynitrite has come into the spotlight in recent years. Its effects on proteins have been implicated in several diseases such as acute lung injury, rheumatoid arthritis, implant rejection, artherosclerosis, Parkinson's disease, and Alzheimer's disease. Peroxynitrite is thought to inactivate a variety of proteins including thiolate-ligated heme proteins such as cytochrome P450 2B1 and PGI2 synthase, through the nitration of tyrosine residues. In previous studies it was reported that thiolate-ligated heme enzymes react with peroxynitrite to form a ferryl intermediate. In an effort to spectroscopically characterize this species in P450BM3, we discovered that the peroxynitrite-generated intermediate is not an FeIVoxo, but rather an iron-nitrosyl [FeNO]6 complex. We present density functional calculations as well as M?ssbauer and stopped-flow spectroscopic characterizations of the peroxynitrite-generated intermediate in P450BM3.  相似文献   

8.
We are investigating the redox chemistry of wild-type (WT) and mutant (1-12G) cytochrome P450 BM3. Absorption spectra in solution feature the Fe(III) Soret at 418 nm for WT and a split Soret for 1-12G at 390 and 418 nm. Voltammetry of the proteins within DDAPSS films on the surface of carbon electrodes reveal nearly identical Fe(III/II) potentials (approximately -200 mV vs Ag/AgCl), but significant differences in k degrees , 250 vs 30 s(-)(1), and Fe(III/II)-CO potentials, -140 vs -115 mV, for WT vs 1-12G. Catalytic reduction of dioxygen by the proteins on rotating-disk electrodes was analyzed using Levich and Koutecky-Levich treatments. The data reveal 1-12G n and k(obs) values that are, respectively, 1.7 and 0.07 times those of WT, suggesting that the two proteins differ strikingly in their reactions with dioxygen.  相似文献   

9.
Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at -330 mV (vs Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with the scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s-1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron-transfer rates that differ by approximately 100 mV and >10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties.  相似文献   

10.
We demonstrate that photoexcitation of NAD(P)H at 355 nm using a Nd:YAG laser leads to rapid reduction of the heme domain of the Bacillus megaterium fatty acid hydroxylase flavocytochrome P450 BM3. An aqueous electron derived from photoexcited NAD(P)H is rapidly transferred to the heme domain, enabling the formation of a carbon monoxy complex of the ferrous P450 (FeII-CO) on the microsecond time scale. Using this approach we have determined the limiting rate constant (1770 s-1 for substrate-free heme domain) for formation of the FeII-CO complex. We find no dependence of the observed rate of FeII-CO complex formation on NAD(P)H concentration but demonstrate a hyperbolic dependence on carbon monoxide concentration. The apparent dissociation constant for the complex of carbon monoxide bound noncovalently to the ferric form of the BM3 heme domain (and with NADH as reductant) is 323 microM. Binding of a P450 substrate (N-palmitoylglycine) weakened the complex between carbon monoxide and the ferric BM3 heme domain (Kd increased to 1404 microM) but enhanced the rate of formation of the FeII-CO complex (3036 s-1 for substrate-free heme domain). This study demonstrates the applicability of NAD(P)H photoexcitation as a method for rapid electron delivery to P450 enzymes and provides a new route to probing the P450 catalytic cycle and its transient intermediates.  相似文献   

11.
12.
Cytochrome P450(BM3), from Bacillus megaterium, catalyses the epoxidation of linolenic acid yielding 15,16-epoxyoctadeca-9,12-dienoic acid with complete regio- and moderate enantio-selectivity (60% ee). The absolute configuration of the product is tentatively assigned as 15(R),16(S)-. The Michaelis-Menten parameters kcat and Km for the reaction were determined to be 3126 +/- 226 min(-1) and 24 +/- 6 microM respectively.  相似文献   

13.
Here we report that an engineered microbial cytochrome P450 BM-3 (CYP102A subfamily) efficiently catalyzes the alpha-hydroxylation of phenylacetic acid esters. This P450 BM-3 variant also produces the authentic human metabolite of buspirone, R-6-hydroxybuspirone, with 99.5% ee.  相似文献   

14.
There is intense interest in late‐stage catalytic C?H bond functionalization as an integral part of synthesis. Effective catalysts must have a broad substrate range and tolerate diverse functional groups. Drug molecules provide a good test of these attributes of a catalyst. A library of P450BM3 mutants developed from four base mutants with high activity for hydrocarbon oxidation produced human metabolites of a panel of drugs that included neutral (chlorzoxazone, testosterone), cationic (amitriptyline, lidocaine) and anionic (diclofenac, naproxen) compounds. No single mutant was active for all the tested drugs but multiple variants in the library showed high activity with each compound. The high conversions enabled full product characterization that led to the discovery of the new P450 reaction type of oxidative decarboxylation of an α‐hydroxy carboxylic acid and the formation a protected imine from an amine, offering a novel route to α‐functionalization of amines. The substrate range and varied product profiles suggest that this library of enzymes is a good basis for developing late‐stage C?H activation catalysts.  相似文献   

15.
16.
17.
18.
The sesquiterpenoids are a large class of naturally occurring compounds with biological functions and desirable properties. Oxidation of the sesquiterpene (+)-valencene by wild type and mutants of P450cam from Pseudomonas putida, and of P450BM-3 from Bacillus megaterium, have been investigated as a potential route to (+)-nootkatone, a fine fragrance. Wild type P450cam did not oxidise (+)-valencene but the mutants showed activities up to 9.8 nmol (nmol P450)(-1) min(-1), with (+)-trans-nootkatol and (+)-nootkatone constituting >85% of the products. Wild type P450BM-3 and mutants had higher activities (up to 43 min(-1)) than P450cam but were much less selective. Of the many products, cis- and trans-(+)-nootkatol, (+)-nootkatone, cis-(+)-valencene-1,10-epoxide, trans-(+)-nootkaton-9-ol, and (+)-nootkatone-13S,14-epoxide were isolated from whole-cell reactions and characterised. The selectivity patterns suggest that (+)-valencene has one binding orientation in P450cam but multiple orientations in P450BM-3.  相似文献   

19.
Herein, we report the results from two experiments that are consistent with sulfoxidation and N-dealkylation involving two different enzyme substrate complexes and thus two different active oxygen species that do not interchange. The first experiment involves the use of a mutant that may increase the amount of the hydroperoxy-iron species (FeIIIO2H).1 This mutant increases the amount of sulfoxidation relative to the amount of N-dealkylation by 4-fold. In a second experiment, deuterium substitution on the N-methyl groups of substrate does not result in an increase in sulfoxidation. This later result is consistent with N-dealkylation and sulfoxidation being mediated by two different active oxygen species. While the data indicate two active oxygen species, they do not distinguish between the different possibilities for the active oxygen species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号