首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The results of an experimental and numerical investigation of flow and heat transfer in the region of the interaction between an incident oblique shock and turbulent boundary layers on sharp and blunt plates are presented for the Mach numbers M = 5 and 6 and the Reynolds numbers ReL = 27×106 and 14×106. The plate bluntness and the incident shock position were varied. It is shown that the maximum Stanton number St m in the shock incidence zone decreases with increase in the plate bluntness radius r to a certain value and then varies only slightly with further increase in r. In the case of a turbulent undisturbed boundary layer heat transfer is diminished with increase in r more slowly than in the case of a laminar undisturbed flow. In the presence of an incident shock the bluntness of the leading edge of the flat plate results in a greater decrease in the Stanton number than in the absence of the shock. With increase in the bluntness of the leading edge of the plate the separation zone first sharply lengthens and then decreases in size or remains constant.  相似文献   

3.
4.
The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.  相似文献   

5.
Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.This work was supported by the Chinese National Science Foundation. Thanks for Prof. Z. B. Lin and Miss X. Y. Feng for their helps. The authors wish to express thanks to Professor W. Merzkirch who has helped us to check the paper again and again.  相似文献   

6.
We examine the problem of planar one-dimensional motion of a strong shock wave with moving internal boundary in which the initial position of the front, its intensity, the mass of the gas involved in the motion, and the energy contained in this gas are known. The problem is not self-similar and its exact solution, which involves working with partial differential equations, presents serious difficulties. In the following we determine the law of shock-front motion in this problem via the method of [1], which makes it possible to find a system of ordinary differential equations for the problem. The method is based on an initial specification of the power-law coupling between the dimensionless Lagrangian and Eulerian variables and replacement of the energy equation by this coupling and the energy integral. The solution is sought in the first approximation.  相似文献   

7.
2D particle image velocimetry was used to study the three-dimensionality of the shock-boundary layer interaction generated by a small 20° compression ramp in a low aspect ratio continuously operated wind tunnel. High-resolution data were taken in four streamwise-wallnormal planes: three planes located in the sidewall boundary layer and one near the tunnel centerline. The incoming boundary layer was found to show three-dimensionality, with significant overshoot in the velocity profiles observed near the sidewall. The size of the wedge influenced the interaction, which was weaker than that observed in the case of a large compression wedge. The flow turning angle was ≈8° near the tunnel centerline and changed significantly across the span. Measurements behind the compression wedge in the centerline plane showed that both velocity and turbulence properties were nearly fully recovered ≈14δ behind the compression corner. The shock angle varied with spanwise position, and a multi-shock structure was observed in the sidewall planes. The size of the interaction decreased in the sidewall boundary layer. Non-monotonic variations in both velocity and turbulence profiles across the sidewall planes suggest the presence of significant spanwise flows, possibly corner vortices.  相似文献   

8.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 8–14, September–October, 1990.  相似文献   

9.
Effects of micro-ramps on a shock wave/turbulent boundary layer interaction   总被引:2,自引:0,他引:2  
Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of the unperturbed boundary layer thickness and the measurement planes are located 0.1 and 0.6 boundary layer thicknesses from the wall. The micro-ramps generate packets of individual vortex pairs downstream of their vertices, which produce counter-rotating longitudinal streamwise vortex pairs in a time-averaged view. These structures induce a pronounced spanwise variation of the flow properties, namely the mixing across the boundary layer interface. The probability of reversed-flow occurrence is decreased by 20 and 30% for the single- and double-row configurations, respectively. Both configurations of micro-ramps stabilize the shock motion by reducing the length of its motion by about 20% in the lower measurement plane. The results are summarized by a conceptual model describing the boundary layer’s and interaction’s flow pattern under the effect of the micro-ramps.  相似文献   

10.
A combined theoretical and experimental study is presented for the interaction between crossing shock waves generated by (10°, 10°) sharp fins and a flat plate turbulent boundary layer at Mach 8.3. The theoretical model is the full 3-D mean compressible Reynolds-averaged Navier-Stokes RANS) equations incorporating the algebraic turbulent eddy viscosity model of Baldwin and Lomax. A grid refinement study indicated that adequate resolution of the flowfield has been achieved. Computed results agree well with experiment for surface pressure and surface flow patterns and for pitot pressure and yaw angle profiles in the flowfield. The computations, however, significantly overpredict surface heat transfer. Analysis of the computed flowfield results indicates the formation of complex streamline and wave structures within the interaction region.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

11.
12.
Gol'dfel'd  M. A. 《Fluid Dynamics》1985,20(5):728-734
An experimental study is made of the turbulent boundary layer in its interaction with a shock wave, the purpose being to clarify questions connected with the increase in the fullness of the velocity profiles. New systematic data are obtained on the development of the boundary layer, and its structure and asymptotic behavior beyond the interaction region. These results are for axisymmetric flow in the range of Mach numbers M=2–4 and angles of rotation of the flow 10–25°. Conditions of developed separation are included. Extensive information about the general properties of flows with separation has been obtained in a number of studies. A survey of these may be found, for example, in [1, 2]. Certain questions about the separation and reattachment of the boundary layer are clarified. The dimensions of the separation region are determined and its structure studied in detail for various shapes of the surface around which the flow takes place. Nevertheless it has not yet proved possible to reach a complete understanding of this complex phenomenon. Usually plane models have been used for the investigations, but in this case it is evidently impossible to exclude completely the influence of end effects on the flow in the interaction zone. Therefore it is preferable to study such flows in axisymmetric models; this considerably eases the task of analyzing and interpreting the results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 75–82, September–October, 1985.  相似文献   

13.
We present experimental results obtained in a turbulent boundary layer at a Mach number of 2.3 impinged by an oblique shock wave. Strong unsteadiness is developed in the interaction, involving several frequency ranges which can extend over two orders of magnitude. In this paper, attention is focused on the links between the low-frequency shock motions and the separation bubble, in particular phase relationships are evaluated. An interpretation based on a simple scheme of the streamwise evolution of the instantaneous pressure is proposed. As it is mainly based on the pressure signal properties inside the region of the shock oscillation, it may be expected that it will still be relevant for different configurations of shock-induced separation as compression ramp, blunt bodies, or over expanded nozzles.  相似文献   

14.
The effect of upstream injection by means of continuous air jet vortex generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5° and a Mach number M e  = 2.3. Considered are the effects of the AJVGs on the upstream boundary layer flow topology and on the spatial and dynamical characteristics of the interaction. To this aim, Stereoscopic Particle Image Velocimetry has been employed, in addition to hot-wire anemometry (HWA) for the investigation of the unsteady characteristics of the reflected shock. The AJVGs cause a reduction of the separation bubble length and height. In addition, the energetic frequency range of the reflected shock is increased by approximately 50%, which is in qualitative agreement with the smaller separation bubble size.  相似文献   

15.
Particle image velocimetry is used to investigate the interaction between an incident shock wave and a turbulent boundary layer at Mach 2.1. A particle response assessment establishes the fidelity of the tracer particles. The undisturbed boundary layer is characterized in detail. The mean velocity field of the interaction shows the incident and reflected shock wave pattern, as well as the boundary layer distortion. Significant reversed flow is measured instantaneously, although, on average no reversed flow is observed. The interaction instantaneously exhibits a multi-layered structure, namely, a high-velocity outer region and a low-velocity inner region. Flow turbulence shows the highest intensity in the region beneath the impingement of the incident shock wave. The turbulent fluctuations are found to be highly anisotropic, with the streamwise component dominating. A distinct streamwise-oriented region of relatively large kinematic Reynolds shear stress magnitude appears within the lower half of the redeveloping boundary layer. Boundary layer recovery towards initial equilibrium conditions appears to be a gradual process.  相似文献   

16.
Eric Garnier 《Shock Waves》2009,19(6):479-486
The shock/boundary layer interaction experiment performed at IUSTI (Institut Universitaire des Systèmes Thermiques Industriels, Université de Provence) has been computed using the Stimulated Detached Eddy Simulation approach. This computation accounts for the whole wind tunnel span. It suggests that corner separations induced by the presence of lateral walls reduce the effective section of the wind tunnel and strengthen the interaction, making periodic computations irrelevant for strongly separated situations (shock deviation of 9.5 degrees). Furthermore, this computation evidences that the strongest wall pressure fluctuations are found in corner flows. The latter are subjected to low frequency movements which contribute to 30% of the total fluctuations. Nevertheless, it was not possible to connect statistically these movements to the ones of the main separation.  相似文献   

17.
Particle-turbulence interaction in a boundary layer   总被引:15,自引:0,他引:15  
Particle-turbulence interaction in wall turbulent flows has been studied. A series of experiments varying particle size, particle density, particle loading and flow Re has been conducted. The results show that the larger polystyrene particles (1100 μm) cause an increase in the number of wall ejections, giving rise to an increase in the measured values of the turbulence intensities and Reynolds stresses. On the other hand, the smaller polystyrene particles (120 μm) bring about a decrease in the number of wall ejections, causing a decrease in the measured intensities and Reynolds stresses. These effects are enhanced as the particle loading is increased. It was also found that the heavier glass particles (88 μm) do not bring about any significant modulation of turbulence. In addition, measurements of the burst frequency and the mean streak-spacing show no significant change with increase in particle loading. Based on these observations, a mechanism of particle transport in wall turbulent flows has been proposed, in which the particles are transported (depending on their size, density and flow Re) by the bursting events of the wall regions.  相似文献   

18.
The nonlinear problem of boundary layer instability under the influence of a plane vortex is investigated for high Reynolds numbers. The vortex occupies the entire thickness of the boundary layer and has a longitudinal dimension of the order of the Tollmien-Schlichting wavelength. The initial vortex is rapidly swept away by the flow, inducing a Stokes layer near the surface of the plate. Expanding, this layer reaches the dimensions of the viscous sublayer of free interaction theory, where wave packet generation takes place. In the case in question a feature of the nonlinear stage of development of the disturbances is the formation of a concentrated vortex, which arises in the Stokes layer and grows rapidly, whereas the wave packet propagated ahead of it remains linear. From the calculations there emerges a tendency for the new vortex to be formed above the wail, whereas the maximum vorticity of the vortex generated in the Stokes layer corresponds to the wall itself.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 70–77, January–February, 1993.The authors are grateful to V. V. Kozlov for his interest in their work.  相似文献   

19.
20.
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0∼4.7)×107/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30° for a sweepback angle of 67.6°. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10° and secondary separation were detected at deflection of ϑ≥20°. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements atM≥6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. The project supported by China Academy of Launch Vehicle Technology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号