首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, silver nanoparticles were synthesized using Salvia microphylla Kunth leaves extract as reducing agent and stabilizing agent. The effect of reaction time and plant extract amount on the biosynthesized nanoparticles were studied. The UV–Vis spectrum indicated that silver nanoparticles show a characteristic surface plasmon resonance at 427 nm. X-ray diffraction experiments show that the silver nanoparticles have a face-centered cubic crystal structure. The density of nanoparticles increases with increasing extract concentration and reaction time. TEM and SEM observations showed well-dispersed quasi-spherical nanoparticles sized in the range of 15–45 nm. The FT-IR analysis suggested the involvement of phenolic compounds in the reduction and stabilization of silver nanoparticles. Synthesized silver nanoparticles showed good antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Finally, the catalytic properties of silver nanoparticles were demonstrated through the degradation of congo red and methyl orange.  相似文献   

2.
A straightforward approach to the synthesis of "clickable" thermoresponsive core cross-linked (CCL) nanoparticles was developed. This approach was based on reversible addition-fragmentation chain transfer (RAFT) radical cross-linking polymerization of styrene and divinylbenzene with azide-functionalized poly(N-isopropylacrylamide) (PNIPAM-N(3)) as macro chain transfer agent in a selective solvent. Spherical nanoparticles with a diameter of 12nm were obtained after 24h polymerization. When the lyophilized CCL nanoparticles were dispersed in THF, spherical nanoparticles were observed, confirming the stability of CCL nanoparticles. The transmission electron microscopy (TEM) studies demonstrated that spherical nanoparticles and wormlike structure coexisted in the aqueous solution. The CCL nanoparticles have a lower critical solution temperature (LCST) at about 29.6°C, a little lower than that of PNIPAM homopolymer. Biotin molecules were conjugated to the surface of CCL nanoparticles via "click" chemistry in aqueous media. After bioconjugation, the LCST shifted to 28.3°C. The bioavailability of biotin to protein avidin was evaluated by a 4'-hydroxyazobenzene-2-carboxylic acid/avidin (HABA/avidin) binding assay and TEM.  相似文献   

3.
Zn-loaded bovine serum albumin nanoparticles (Zn-BSA nanoparticles) were prepared and used as carriers for pH-responsive anticancer drug delivery. Zinc was introduced into this system to increase the stability of the BSA nanoparticles and to load the anticancer drug based on the coordination bonding formation of Zn-BSA and Zn-drug molecules, respectively. The cleavage of either the "Zn-BSA" or the "Zn-drug" coordination bonding, in response to pH, would result in the release of the drug under designated pH conditions. The nanoparticles were spherical with diameters of 50-60 nm and narrow size distribution. Mitoxantrone (MX) was chosen as the model drug to study the release behavior and the inhibitory efficacy against tumor cells. In vitro release behavior of MX loaded Zn-BSA nanoparticles (MX-Zn-BSA nanoparticles) showed a fine pH-responsiveness. The release amount at pH 5.0 was close to 80%, while the cumulative release amount at pH 7.4 was less than 6% within 24 h. The blank Zn-BSA nanoparticles were of low cytotoxicity, while a high cytotoxic activity of MX-Zn-BSA nanoparticles against MCF-7 cells was demonstrated by in vitro cell assays.  相似文献   

4.
Indomethacin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles with an average diameter of 100 nm were prepared by using a combination of an antisolvent diffusion method with preferential solvation (bare nanoparticles). Polyvinyl alcohol (PVA)-coated indomethacin-loaded PLGA nanoparticles with an average diameter of 100 nm were also prepared by emulsification and the solvent evaporation method (PVA-coated nanoparticles). Bare nanoparticles do not have a hydrophilic stabilizer on the surface; therefore, they have high hydrophobicity and negative charges. Electrophoretic mobility of bare nanoparticles at 5 mM NaCl solution was about 68 times higher than that of PVA-coated nanoparticles. Permeability of bare nanoparticles through rat skin was significantly higher than that of PVA-coated nanoparticles when iontophoresis was applied ex vivo. Indomethacin amount inside the skin after the permeation study by using bare nanoparticles was much higher than that by using PVA-coated nanoparticles. Indomethacin transition to circulation and accumulation in muscle by the transdermal delivery of indomethacin-loaded PLGA nanoparticles were significantly enhanced by using the combination of bare nanoparticles and iontophoresis in vivo. As for transdermal route of nanoparticles, both bare and PVA-coated nanoparticles were revealed to penetrate through the transfollicular pathway, and the migration of nanoparticles to follicles was enhanced by the application of iontophoresis. PLGA nanoparticles prepared by the antisolvent diffusion with preferential solvation are beneficial for iontophoretic transdermal delivery of therapeutic agents.  相似文献   

5.
6.
We demonstrated that platinum nanoparticles dispersed in pure water were "soldered" by gold into higher-order structures such as "nanowebs". In practice, gold nanoparticles in water containing the platinum nanoparticles were melted by irradiation of a pulsed 532-nm laser, which excites selectively the surface plasmon band of the gold nanoparticles, and the melted gold nanoparticles solder the platinum nanoparticles together into the nanowebs. Optical absorption spectroscopy and electron microscopy together with electron probe microanalysis were employed to observe the structure of the nanowebs and to elucidate their formation dynamics.  相似文献   

7.
以聚乙烯烷酮(PVP)为修饰剂,制备了CdS纳米微粒。实验结果表明PVP与CdS纳米微粒间存在着强的相互作用,PVP和CdS纳米微粒的荧光都在很大程度上发生淬灭。其原因在于作为修饰剂的PVP与CdS纳米微粒子间发生了特殊缔合.受激时形成共振激发态,电子能量弛豫被延迟。  相似文献   

8.
In the pursuit of making the nanoscale-research greener, the utilization of the reductive potency of a common byproduct of food processing industry i.e. orange peel is reported here to prepare biopolymer-templated "green" silver nanoparticles. Aqueous extract of orange peel at basic pH was exploited to prepare starch supported nanoparticles under ambient conditions. The compositional abundance of pectins, flavonoids, ascorbic acid, sugars, carotenoids and myriad other flavones may be envisaged for the effective reductive potential of orange peel to generate silver nanoparticles. The nanoparticles were distributed within a narrow size spectrum of (3-12 nm) with characteristic Bragg's reflection planes of fcc structure, and surface plasmon resonance peak at 404 nm. Anti-lipid peroxidation assay using goat liver homogenate and DPPH scavenging test established the anti-oxidant potency of the silver nanoparticles. Their synergy with rifampicin against Bacillus subtilis MTCC 736 and cytocompatibility with the human leukemic monocytic cell line, THP-1 were also investigated. Thus, the present work deals with the preparation of starch assisted anti-microbial, cytocompatible and free radical scavenging "green" silver nanoparticles.  相似文献   

9.
Silver–polypyrrole (PPy) core–shell nanoparticles have been fabricated by a facile one-step “green” synthesis using silver nitrate as an oxidant and soluble starch as an environmentally benign stabilizer and co-reducing agent. The morphology and optical properties of the particles were significantly affected by the reaction temperature, soluble starch concentration, and ratio of pyrrole monomer to AgNO3 oxidant. The core–shell nanoparticles exhibited outstanding dispersive properties in deionized water due to residual starch, as compared with PPy nanoparticles in which starch was absent. The mechanism of core–shell nanoparticle formation was elucidated through TEM imaging vs. reaction time. The colloidal and chemical stability of the nanoparticles was demonstrated in a variety of solvents, including acids, bases, and ionic and organic solvents, through monitoring the localized surface plasmon resonance of the nanoparticles. Furthermore, the catalytic properties of these silver–PPy core–shell nanoparticles were also demonstrated.
Figure
Schematic illustration of silver-PPy core-shell nanoparticle formation and methylene blue (MB) reduction using the core-shell nanoparticles as a catalyst.  相似文献   

10.
Using a short-chain zwitterionic organosiloxane, silica nanoparticles were stabilized against aggregation by high ionic strength and/or proteins. Turbidimetry and dynamic light scattering showed that "zwitterated" nanoparticles did not exhibit a significant increase in hydrodynamic radius. When challenged with 3 M NaCl or 50% fetal bovine serum, aggregation was inhibited for at least 24 h, longer with mild heat treatment, which produced nanoparticles with zero net surface charge. These findings suggest "zwitteration" of silica-capped nanoparticles provides excellent stability for in vivo circulation diagnostics and therapies.  相似文献   

11.
We report on a novel high temperature liquid phase "calcination" method with trioctylphosphine oxide (TOPO), tri-n-octylamine (TOA), and squalene for removing the template and strengthening the silica network in colloidal mesoporous silica (CMS) nanoparticles. For such materials, the common calcination procedure in air would result in strong agglomeration, thus preventing their use in colloidal suspensions. The highest efficiency of the new approach is obtained by thermal calcination in TOPO at only 275 °C, as shown by an increasing degree of silica condensation, and the retention of the high colloidal stability of the CMS nanoparticles. Moreover, we also show the ability of the TOPO treatment to remove the template, thus saving a preparation step. The resulting CMS nanoparticles retain the ordered mesostructure, high porosity, and large surface area of the original mesoporous nanoparticles, while showing a much greater degree of silica condensation and high stability. The concept of "liquid calcination" represents a powerful general approach for the preparation of stable colloidal porous nanoparticles.  相似文献   

12.
Stable transition-metal nanoparticles of the type [M(0)](n) are easily accessible through the reduction of Ir(I) or Rh(III) compounds dissolved in "dry" 1-n-butyl-3-methylimidazolium hexafluorophosphate ionic liquid by molecular hydrogen. The formation of these [M(0)](n) nanoparticles is straightforward; they are prepared in dry ionic liquid whereas the presence of the water causes the partial decomposition of ionic liquid with the formation of phosphates, HF and transition-metal fluorides. Transmission electron microscopy (TEM) observations and X-ray diffraction analysis (XRD) show the formation of [Ir(0)](n) and [Rh(0)](n) nanoparticles with 2.0-2.5 nm in diameter. The isolated [M(0)](n) nanoparticles can be redispersed in the ionic liquid, in acetone or used in solventless conditions for the liquid-liquid biphasic, homogeneous or heterogeneous hydrogenation of arenes under mild reaction conditions (75 degrees C and 4 atm). The recovered iridium nanoparticles can be reused several times without any significant loss in catalytic activity. Unprecedented total turnover numbers (TTO) of 3509 in 32 h, for arene hydrogenation by nanoparticles catalysts, have been achieved in the reduction of benzene by the [Ir(0)](n) in solventless conditions. Contrarily, the recovered Rh(0) nanoparticles show significant agglomeration into large particles with a loss of catalytic activity. The hydrogenation of arenes containing functional groups, such as anisole, by the [Ir(0)](n) nanoparticles occurs with concomitant hydrogenolysis of the C-O bond, suggesting that these nanoparticles behave as "heterogeneous catalysts" rather than "homogeneous catalysts".  相似文献   

13.
The doubly thermo-responsive triblock copolymer nanoparticles of polystyrene-block-poly(N-isopropylacrylamide)-block-poly[N,N-(dimethylamino) ethyl methacrylate] (PS-b-PNIPAM-b-PDMAEMA) are successfully prepared through the seeded RAFT polymerization in situ by using the PS-b-PNIPAM-TTC diblock copolymer nanoparticles as the seed. The seeded RAFT polymerization undergoes a pseudo-first-order kinetics procedure, and the molecular weight increases with the monomer conversion linearly. The hydrodynamic diameter (D h) of the triblock copolymer nanoparticles increases with the extension of the PDMAEMA block. In addition, the double thermo-response behavior of the PS-b-PNIPAM-b-PDMAEMA nanoparticles is detected by turbidity analysis, temperature-dependent 1H-NMR analysis, and DLS analysis. The seeded RAFT polymerization is believed as a valid method to prepare triblock copolymer nanoparticles containing two thermo-responsive blocks.  相似文献   

14.
We describe a new type of colloidal 2D gels formed in mixed Langmuir monolayers of stearic acid and octadecylamine on a surface of gold hydrosol. The adsorption of gold nanoparticles on the mixed monolayer led to an increase of interactions between oppositely charged surfactants giving a "soap" of mixed fatty salt. The observed effect is equivalent to a virtual "cooling" of floating monolayer, which undergoes rapid condensation on a surface of aqueous colloid. The consequent shrinking and rearrangement of the monolayer resulted in aggregation of nanoparticles into colloidal 2D "soap"-gels, which represented arrested colloidal phases within nonadsorbing organic medium. When sequentially deposited onto solids by Langmuir-Blodgett technique, the 2D "soap"-gels separated into organic and colloidal phases and gave dendrite-like bilateral organic crystallites coated with gold nanoparticles. The reported colloidal "soap"-assembly can offer a new opportunity to design 2D colloidal systems of widely variable chemistry and structures.  相似文献   

15.
A novel oligonucleotide delivery system that is based on oligonucleotide–nanoparticle conjugates has been described. Installed oligonucleotides were modified with the carbohydrate at the 3′ terminus, accordingly, constructed nanoparticles display clustered carbohydrates on their outer layer for the targeted delivery of oligonucleotides. The method for the construction of ligand-functionalized nanoparticle was simple and reproducible. The stability of the nanoparticles displaying clustered carbohydrates greatly increased in serum compared to nanoparticles without carbohydrates. In order to investigate the targetability of oligonucleotide–nanoparticle conjugates into primary hepatic parenchymal cells, freshly isolated rat hepatocytes were incubated with nanoparticles and the amount of internalized gold nanoparticles was evaluated by an inductively coupled plasma mass spectroscopy analysis. Nanoparticles displaying clustered carbohydrates internalized more efficiently than nanoparticles without carbohydrate modifications. In particular, the cellular uptakes of oligonucleotide-conjugated gold nanoparticle increased 1.7 ~2.0-fold by galactose modification. Competition assay revealed that clustered galactose enhanced the internalization of the nanoparticle into primary hepatic parenchymal cells by a receptor-mediated process.
Figure
A novel oligonucleotide delivery system that is based on oligonucleotide-nanoparticle conjugates has been described. Constructed nanoparticles display clustered carbohydrates on their outer layer. The stability of the nanoparticles displaying clustered carbohydrates increased in serum, and clustered galactose enhanced the internalization of the nanoparticle to hepatic parenchymal cells by a receptor-mediated process  相似文献   

16.
The applicability of CMCht/PAMAM dendrimer nanoparticles for CNS applications was investigated. AFM and TEM observations revealed that the nanoparticles possessed a nanosphere‐like shape with a size from 22.0 to 30.7 nm. The nanoparticles could be bound to fluorescent‐probe FITC for tracing purposes. Post‐natal hippocampal neurons and cortical glial cells were both able to internalize the FITC‐labeled CMCht/PAMAM dendrimer nanoparticles with high efficiency. The percentage of positive cells internalizing the nanoparticles varied, reaching a peak after 48 h of incubation. Further experiments for periods up to 7 d revealed that the periodical addition of FITC‐labelled CMCht/PAMAM dendrimer nanoparticles was needed to maintain the overall percentage of cells internalizing them. Finally, it was also observed that cell viability was not significantly affected by the incubation of dendrimer nanoparticles.

  相似文献   


17.
This study explores the kinetics of a new feature, called "induced crystallization (IC)", observed in an Aerosil dispersed octylcyanobiphenyl (8CB) liquid crystal system. Heating rate dependent experiments were performed using modulation differential scanning calorimetry (MDSC) at various heating ramp rates. In the presence of Aerosil nanoparticles, a well-defined exothermic peak was found as an additional feature on the heating scan before the melting transition, which was absent in the bulk 8CB; hence, we like to call it an "IC" as it is induced by Aerosil nanoparticles in the system. The system LC1-xSilx was prepared by mixing Aerosil nanoparticles in the bulk 8CB by the solvent dispersion method (SDM) where LC represents bulk 8CB and Sil represents Aerosil nanoparticles with x as the Aerosil fraction. The concentration of the Aerosil nanoparticles (x) varied from 0 to 0.2 g/cm3 in the bulk 8CB. The IC transition peak showed a temperature shift and change in the shape and size in the presence of Aerosil nanoparticles. In addition, this transition shifted significantly with different heating ramp rates following an Arrhenius behavior showing activated kinetics. The presence of Aerosil nanoparticles caused a significant increase in the enthalpy and decrease in the activation energy for the IC transition as the density of Aerosil nanoparticles increases and showed a saturation for the highest density of Aerosil nanoparticles. This behavior can be explained in terms of molecular disorder and surface molecular interaction induced by adding Aerosil nanoparticles into the bulk of 8CB liquid crystal.  相似文献   

18.
Silver nanoparticles have been used for a long time and recently various methods have been additionally developed for their production. Here we report for the first time a solid‐state high‐speed vibration milling method for the synthesis of silver nanoparticles, in which poly(vinylpyrrolidone) is used for the reduction of the silver salt. The synthesis is performed at room temperature and no surfactant to direct the anisotropic growth of the nanoparticles is required. The formation of the nanoparticles was studied by UV–Visible spectroscopy, transmission electron microscopy, and powder X‐ray diffraction techniques. The nanoparticles synthesized were found to be uniform in size and shape with an average diameter of less than 5 nm. In addition, the antimicrobial activity of these silver nanoparticles was investigated against Escherichia coli and found to be positive.

  相似文献   


19.
The core-shell nanoparticles consisting of poly(methyl methacrylate) (PMMA) cores surrounded by various acid-modified chitosan shells were synthesized using a surfactant-free emulsion copolymerization, induced by a tert-butylhydroperoxide (TBHP) solution. Methyl methacrylate (MMA) was grafted onto four acid-modified chitosans (hydrochloric, lactic, aspartic, and glutamic acids) with MMA conversions up to 64%. The prepared nanoparticles had diameter ranging from 100 to 300 nm characterized by atomic force microscopy and displayed highly positive surface charges up to +77 mV. Transmission electron microscopic images clearly revealed well-defined core-shell morphology of the nanoparticles where PMMA cores were coated with acid-modified chitosan shells. The effect of acid-modified chitosans on particle size, intensity of surface charge, morphology, and thermal stability were determined systematically. The plasmid DNA/nanoparticles complexes were investigated with ζ-potential measurement. The results suggested that these nanoparticles can effectively complex with plasmid DNAs via electrostatic interaction and could be used as gene carriers.
Figure
The preparation of PMMA/acid-modified chitosan nanoparticles by free radical polymerization  相似文献   

20.
The core-shell gold nanoparticles and copolymer of N-isopropylacrylamide (NIPAM) and N,N'-methylenebisacrylamide (MBAA) hybrids (Au@copolymer) were fabricated through surface-initiated atom-transfer radical polymerization (ATRP) on the surface of gold nanoparticles in 2-propanol/water mixed solvents. The surface of citrate-stabilized gold nanoparticles was first modified by a disulfide initiator for ATRP. The slight cross-linking polymerization between NIPAM and MBAA occurred on the gold surface and resulted in the formation of core-shell Au@copolymer nanostructures that were characterized by TEM, and FTIR and UV-visible spectroscopy. Such synthesized Au@copolymer hybrids possess clearly thermosensitive properties and exhibit "inspire" and "expire" water behavior in response to temperature changes in aqueous solution. Because of this property, we enable to trap and encapsulate smaller nanoparticles by using the free space of the copolymer-network scaffold anchored at the gold surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号