首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride nanophase vitroceramics when excited by a 975 nm diode laser was studied. An ultraviolet upconversion luminescence line positioned at 363.6 nm was found. It was attributed to the fluorescence transition of 1D23H6 of Tm3+ ion. Several visible upconversion luminescence lines at 450.7 nm, (477.0 nm, 462.5 nm), 648.5 nm, (680.5 nm, 699.5 nm) and (777.2 nm, 800.7 nm) were also found, which result respectively from the fluorescence transitions of 1D23F4, 1G43H6, 1G43F4, 3F33H6 and 3H43H6 of Tm3+ ion. The careful measurement and analysis of the variation of upconversion luminescence intensity F as a function of the 975 nm pumping laser power P prove that the upconversion luminescence of 1D2 state is partly a five-photon upconversion luminescence, and the upconversion luminescence of 1G4 state and 3H4 state are respectively the three-photon and two-photon upconversion luminescence. The theoretical analysis suggested that the upconversion mechanism of the 363.6 nm 1D23H6 upconversion luminescence is partly the cross energy transfer of {3H4(Tm3+), 3F4(Tm3+), 1G4(Tm3+)→1D2(Tm3+)} and {1G4(Tm3+)→3F4(Tm3+), 3H4(Tm3+)→1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results respectively from the sequential energy transfer {2F5/2(Yb3+)→2F7/2(Yb3+), 3H4(Tm3+)→1G4(Tm3+)} and {2F5/2(Yb3+) →2F7/2(Yb3+), 3F4(Tm3+)→3F2(Tm3+)} from Yb3+ ions to Tm3+ ions. Supported by the National Natural Science Foundation of China (Grant No. 10674019)  相似文献   

2.
Single crystals of disordered double sodium-gadolinium tungstate NaGd(WO4)2 doped with Tm ions were grown by the Czochralski method. The polarized absorption and emission spectra of these crystals with different activator concentrations and the decay kinetics of the 3 H 4 and 3 F 4 excited states of Tm3+ ions at 300 K were investigated. The absorption and emission cross sections of the expected laser transition 3 F 4 ? 3 H 6 in the Tm3+ ion were determined and the amplification spectra of the active laser medium NaGd(WO4)2:Tm at different levels of inverse population of the upper laser level 3 F 4 of the Tm3+ ion were constructed. The prospects for using these crystals as active media in 2-μm solid-state lasers are discussed.  相似文献   

3.
This study deals with the results on the concentration-dependent fluorescence properties of Tb3+-doped calcium aluminosilicate (CAS) glasses of composition (100−x)(58SiO2–23CaO–5Al2O3–4MgO–10NaF in mol%)-x Tb2O3 (x=0, 0.25, 0.5, 1, 2, 4, 8, 16, 24, 32, 40 in wt%). The FTIR reflectance spectra suggested the role of dopant ions as network modifiers in the glass network. The fluorescence spectra of low Tb3+-doped glasses have revealed prominent blue and green emissions from 5D3 and 5D4 excited levels to 7Fj ground state multiplet, respectively. The glass with 2 wt% of Tb2O3 has exhibited maximum intensity of blue emission from 5D3 level, while green emission from 5D4 level has increased linearly up to 24 wt% and showed reduction in the rate of increase for higher Tb2O3 concentrations. The concentration quenching of blue emission (5D37Fj) is attributed mainly to the resonant energy transfer (RET) assisted cross-relaxation (CR) among the excited and nearest neighbour unexcited Tb3+ ions in the glass matrix. The decline in rate of increase of green emission (5D47Fj) at higher concentrations has been explained due to a possible occurrence of cooperative energy transfers leading to 4f8→4f75d transition interactions. The blue and green emission decay kinetics have been recorded to compute the excited level (5D3 and 5D4) lifetimes, which confirmed the Tb3+ concentration quenching of the blue emission in these glasses.  相似文献   

4.
A new laser medium – Yb,Tm:KY(WO4)2 – for diode pumped solid state laser applications operating around 1.9 to 2.0 μm has been investigated and the main laser characteristics are presented. Diode pumping at 981 nm and around 805 nm was realised. For 981-nm pumping, the excitation occurs into Yb3+ ions followed by an energy transfer to Tm3+ions. A slope efficiency of 19% was realised. For pumping around 805 nm, the excitation occurs directly into the Tm3+ ions. Here a maximum slope efficiency of 52%, an optical efficiency of 40%, and output powers of more than 1 W were realised. Using a birefringent quartz plate as an intracavity tuning element, the tunability of the Yb,Tm:KY(WO4)2 laser in the spectral range of 1.85–2.0 μm has been demonstrated. The possibility of laser operation in a microchip cavity configuration for this material has also been shown. Received: 12 March 2002 / Revised version: 20 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +49-531/592-4116, E-mail: stefan.kueck@ptb.de  相似文献   

5.
In the context, some lanthanide (Eu3+, Tb3+ and Sm3+) complexes with conjugated carboxylic acids (pyridine-carboxylic acids derivatives) have been synthesized and characterized. The low temperature fluorescent spectra for these complexes have been measured at nitrogen atmosphere (77 K), indicating that the central Ln3+ ions locate in an equivalent coordination environment with low symmetry for most of these lanthanide complexes belonging to dimeric or polymeric structure. Therefore, the electronic dipole transition (supersensitive transition) (5D07F2 for Eu3+, 5D47F6 for Tb3+, 4G5/26H9/2 for Sm3+) and magnetic dipole transition (5D07F1 for Eu3+, 5D47F5 for Tb3+, 4G5/26H5/2 for Sm3+) show the regular change in the corresponding split number of fluorescent spectra, which can be realized to predict the fine structure of lanthanide complexes.  相似文献   

6.
In this paper we present and discuss results of detailed spectroscopy studies of Pr3+ luminescence from the (Ba,La)F2:0.2 m%Pr crystals under UV and VUV synchrotron excitation.We have measured time resolved emissions from the minor site Pr3+ in (Ba,La)F2:Pr at 10 and 300 K. The spectra clearly show the 1S0 emission from the Pr3+ ions in some low symmetry Pr-sites (we designate them La-sites) previously identified in higher concentration (0.3 m%Pr and more) crystals. However most of emission from the Pr activated (Ba,La)F2 crystals originates in Pr3+ ions in other sites which produce an efficient d-f emission. As demonstrated by excitation spectra, the emission from some of these sites (denoted as Ba-sites) closely resembles the d-f emission from BaF2.The La-site, time resolved and long delay emission spectra are dominated by hypersensitive transitions from the 1S0 and 3P0 levels to lower energy levels of the 4f2 configurations. Only these transitions contribute to the photon cascade emission desired for some mercury free phosphor applications.  相似文献   

7.
The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride glass when excited by a 975 nm diode laser was studied in this paper. One typical ultraviolet upconversion luminescence lines positioned at 362.3 nm was found. It can be attributed to the five-photon upconversion luminescence transition of 1D2 → 3H6. Several visible upconversion luminescence lines at 451.1 nm, (477.9 nm, 462.5 nm), 648.7 nm, (680.5 nm, 699.5 nm) and (777.5 nm, 800.7 nm) were found also, which results from the fluorescence transitions of five-photon 1D2 → 3F4, three-photon 1G4 → 3H6, three-photon 1G4 → 3F4, two-photon 3F3 → 3H6 and two-photon 3H4 → 3H6 of Tm3+ ion, respectively. The theoretical analysis suggests that the upconversion mechanism of the 362.3 nm 1D2 → 3H6 upconversion luminescence is the cross energy transfer of {3H4(Tm3+) → 3F4(Tm3+), 1G4(Tm3+) → 1D2(Tm3+)} and {1G4(Tm3+) → 3F4(Tm3+), 3H4(Tm3+) → 1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results from the sequential energy transfer {2F5/2(Yb3+) → 2F7/2(Yb3+), 3H4(Tm3+) → 1G4(Tm3+)} and {2F5/2(Yb3+) → 2F7/2(Yb3+), 3F4(Tm3+) → 3F2(Tm3+)} from Yb3+ ions to Tm3+ions, respectively.  相似文献   

8.
Detailed spectroscopic studies of the triply doped KGd(WO4)2:Ho3+/Yb3+/Tm3+ single crystals (which exhibit multicolor up-conversion fluorescence) are reported for the first time. The absorption spectra of crystals were measured at 10 and 300 K; the room temperature luminescence spectra were excited at 980 nm wavelength. The dependence of the intensity of luminescence on the excitation power for three different concentration of Ho3+, Yb3+ and Tm3+ ions was investigated. Efficient green and red up-converted luminescence of Ho3+ ions and weak blue up-conversion luminescence of Tm3+ ions were observed in spectra. The red emission of Ho3+ ions is more intensive than their green emission. Dependence of the up-conversion luminescence intensity on the excitation power and impurities concentration was also studied; the number of phonon needed for efficient up-conversion was determined for each case. All possible energy transfer processes between different pairs of the impurity ions' energy levels are also discussed.  相似文献   

9.
Spectroscopic properties of Pr3+ doped KYb(WO4)2 single crystals were investigated. The crystal lattice parameters were determined. Energy levels of Pr3+ in KYb(WO4)2 were assigned. The absorption, emission, excitation, time-resolved emission and excitation spectra were measured at low (10 K) and at room temperature. Decay times of the praseodymium emissions are non-exponential and unusually short. Site selection spectroscopy evidences several different Pr3+ sites. The Judd-Ofelt intensity model was used to analyse the experimental data. The Ω λ parameters, branching ratio and electric dipole transition probabilities were determined.  相似文献   

10.
Room temperature steady and time resolved emission spectra of LiIn1−xTmx(WO4)2 (where thulium concentration is 0, 0.5, 1, 5 and 10 at%) blue phosphors, under UV excitation energy have been investigated. The concentration quenching effect on the blue emission, due to the (WO4)−2 groups and 1G43H6 emission transition of Tm3+ were studied. Two energy transfer mechanisms are shown. The first takes place between excited (WO4)−2 groups and the 1G4 energy level of Tm3+, and is mainly analyzed by phonon-assisted energy transfer. The second mechanism is due to an energy transfer from the excited Tm3+ ions to the surrounding ground state Tm3+ ions. The non-exponential decay curves of the 1G4 level observed for higher concentrations are analyzed by the Inokuti–Hirayama model. We think that the quenching effect between Tm3+ ions is mainly linked to the dipole–dipole interactions.  相似文献   

11.
CW laser performance of Yb and Er,Yb doped tungstates   总被引:2,自引:0,他引:2  
 Room temperature cw laser action of Yb3+-doped KY(WO4)2 and KGd(WO4)2 crystals at 1.025 μm and Er, Yb : KY(WO4)2 at 1.54 μm has been demonstrated under pumping by both Ti-sapphire laser and InGaAs laser diodes. A slope efficiency of Yb-lasers up to 78% has been obtained. Received: 19 June 1996  相似文献   

12.
测量了Tm3+离子不同浓度(0.5at.%, 3 at.%, 5 at.%)掺杂的NaY(WO4)2晶体在800nm激光二极管激发下的上转换发射光谱.结合吸收谱、荧光谱和由Judd-Ofelt理论计算的光谱参数,详细分析了Tm3+:NaY(WO4)2晶体中上转换能量传递机理和离子浓度对上转换发射的影响.讨论了四种影响上转换发光效率的离子间相互作用机理:3H5+1G43H6+1D23H5+3H53H6+3F31G4+3H63F4+3F31G4+3H63F3+3F4,并根据Miyakawa-Dexter理论定量计算了各过程的发生概率.论证了交叉弛豫和共协上转换等浓度猝灭效应是影响Tm3+离子蓝色上转换荧光发射效率的主要因素. 关键词: 3+离子')" href="#">Tm3+离子 4)2晶体')" href="#">NaY(WO4)2晶体 上转换 浓度猝灭  相似文献   

13.
The nonlinear refractive indices of Yb3+: KY(WO4)2 and Yb3+:YVO4 laser crystals are characterized using a Z-scan technique at a wavelength of 1.08 μm for different polarizations. The results reveal that the nonlinear refractive index of Yb3+:YVO4 is superior to that of Yb3+:KY(WO4)2 and is found to be 1.9×10-15 cm2/W and 1.5×10-15 cm2/W for E⊥c and E∥c polarizations, respectively. PACS 42.65.Hw; 42.55.Rz; 42.65.Re; 42.70.Hj  相似文献   

14.
在室温下,测量了Er:Tm:NaY(WO4)2晶体的吸收光谱、激发光谱、发射光谱以及上转换发光,并运用J-O理论对测量的结果进行了计算,得出了Er:Tm:NaY(WO4)2晶体的强度参数.报道了Tm,Er离子间特殊的能量传递和相关上转换,解释了离子间的能级跃迁过程.同时,对于Er增强Tm离子近红外发光的特性也作了充分研究. 关键词: 4)2晶体')" href="#">Er:Tm:NaY(WO4)2晶体 吸收光谱 发射光谱 激发光谱 上转换  相似文献   

15.
Nanometer-sized Eu3+-doped ZnS and Mn2+-doped ZnS particles were prepared by solid-state method at low temperature. The structures and properties of those materials were characterized by X-ray diffraction (XRD) and photoluminescent spectroscopy techniques. The XRD patterns reveal that the doped ZnS nanoparticles belong to zinc-blende structure. The concentration of doping ions has little effect on the sizes of the doped ZnS nanoparticles, which mainly depends on the temperature of preparation. The emission peaks from the 5D07FJ (J=1, 2, and 4) electronic energy transitions of Eu3+ were observed in the emission spectra of the ZnS:Eu3+ nanoparticles. The intensity ratio of the two peaks from the 5D07F1 and 5D07F2 transitions indicates that more Eu3+ ions occupy the sites with no inversion symmetry. For the ZnS:Mn2+ nanoparticles, an orange emission from the 4T16A1 transition of Mn2+ is present, indicating that the doping ions occupy the positions of the ZnS lattices. Meanwhile, UV-induced luminescence enhancement was observed for the ZnS:Mn2+ nanoparticles, the possible reason of which is discussed primarily.  相似文献   

16.
Eu3+-doped gadolinium orthophosphate (GdPO4) (Eu3+ at%=0, 2, 5, 7, 10, 15, 20 and 30) nanoparticles have been prepared by ethylene glycol route and subsequently heated at 500 and 900 °C. The crystallite size increases with increasing heat-treatment temperature. Luminescence study shows that magnetic dipole transition (5D07F1) is prominent over the electric dipole transition (5D07F2), which has been attributed to occupancy of inversion symmetry site by more Eu3+ ions in Eu3+-doped GdPO4. The luminescence intensity is enhanced as heat-treatment temperature increases from 500 to 900 °C due to the improved crystallinity. Optimum luminescence is observed for 5–7 at% Eu3+ in GdPO4 nanoparticles. Above this concentration, luminescence intensity decreases due to concentration quenching effect. This is supported by lifetime study.  相似文献   

17.
A transparent Er3+–Tm3+–Yb3+ tri-doped oxyfluoride glass ceramics containing LiYF4 nanocrystals were prepared. Under 980 nm laser diode (LD) pumping, intensive red, green and blue upconversion (UC) was obtained. The blue, green, and red UC radiations correspond to the transitions 1G43H6 of Tm3+, 2H11/2/4S3/24I15/2, and 4F9/24I15/2 of Er3+ ions, respectively. This is similar to that in Tm3+–Yb3+ and/or Er3+–Yb3+ co-doped glass ceramics. However, the blue UC radiations of the Er3+–Yb3+ co-doped glass ceramics is two-photon process due to cooperative energy transfer. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

18.
Thermal quenching of 5d-4f luminescence from Nd3+, Er3+ and Tm3+ ions doped into KYF4 crystals has been investigated in the temperature range up to ∼750 K where this luminescence is completely quenched. The obtained temperatures of thermal quenching (Tq) are ∼270, 495, 450 K for Nd3+, Er3+, Tm3+, respectively. At high temperatures, thermal quenching of 5d-4f luminescence from Nd3+ and Er3+ is accompanied by the appearance of 4f-4f luminescence from the lower-energy 4f levels. It has been shown that the dominating mechanism of thermal quenching for Nd3+ and Er3+ ions is thermally stimulated non-radiative transitions (intersystem crossing) from the 5d states to lower-energy 4f levels, namely 2G(2)9/2 and 2F(2)7/2, respectively, whereas for the Tm3+ ion, thermally stimulated ionization of 5d electrons to the conduction band states is responsible for thermal quenching of 5d-4f luminescence. The energy gap between the lowest Tm3+ 5d level and the bottom of the KYF4 conduction band has been estimated to be 0.66 eV.  相似文献   

19.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

20.
Tm- and Yb-doped gadolinium tungstate, (GdxTmyYb1−xy)2(WO4)3 (x=0.7-0.9; y=0.001-0.01), have been prepared by the polymerized complex method to achieve a homogeneous dispersion of dopants and to stabilize the host structure. Decomposition (900 °C 5 h) of the precursors with x=0.8-0.9 yielded a pure monoclinic phase, while that of x=0.7 resulted in formation of an orthorhombic impurity. The monoclinic phase exhibits bright up-converted blue emission due to the 1G43H6 transition of Tm3+ (472 nm) upon excitation into the Yb3+:2F7/22F5/2 absorption band as a result of energy transfer from Yb to Tm. The orthorhombic impurity acts as a strong quencher of emission, and the quenching mechanism has been discussed on the basis of structural and spectroscopic properties of orthorhombic Lu2(WO4)3:Tm,Yb prepared by the same method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号