首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anions binding properties of the pyrrole-based tripodal anion receptor 1 were studied by X-ray crystallography, 1H NMR, and ESI-MS. It revealed that this new tripodal receptor has a preference for binding H2PO4 and F ions.  相似文献   

2.
A new class of macrobicyclic azacryptand containing dipyrrolylmethane subunits with nitrogen bridgeheads was synthesized by the Mannich reaction of the dipyrrolylmethane in the presence of aqueous ammonia. The azacryptand exhibits a staggered conformation in the solid state, but is in a dynamic equilibrium with the eclipsed conformation in solution studied by the variable-temperature (1)H NMR methods. The azacryptand has a specific size suitable only for fluoride ion; large anions such as NO(3)(-) bind in the clefts of the macrobicycle as shown by the X-ray structures of its fluoride ion inclusion and the nitrate anion complexes. The anion binding studies showed that it has high selectivity and affinity for fluoride ion in acetone over other anions studied, which was supported by (1)H and (19)F NMR methods. The azacryptand has fast fluoride ion-mediated proton-deuterium exchanges with acetone-d(6) studied by the (19)F NMR method.  相似文献   

3.
A series of easy-to-make fluorinated tripodal anion transporters containing urea and thiourea groups have been prepared and their anion transport properties studied. Vesicle anion transport assays using ion-selective electrodes show that this class of compound is capable of transporting chloride through a lipid bilayer via a variety of mechanisms, including chloride/H(+) cotransport and chloride/nitrate, chloride/bicarbonate, and to a lesser extent an unusual chloride/sulfate antiport process. Calculations indicate that increasing the degree of fluorination of the tripodal transmembrane transporters increases the lipophilicity of the transporter and this is shown to be the major contributing factor in the superior transport activity of the fluorinated compounds, with a maximum transport rate achieved for clog P = 8. The most active transporter 5 contained a urea functionality appended with a 3,5-bis(trifluoromethyl)phenyl group and was able to mediate transmembrane chloride transport at receptor to lipid ratios as low as 1:250000. Proton NMR titration and single crystal X-ray diffraction revealed the ability of the tripodal receptors to bind different anions with varying affinities in a 1:1 or 2:1 stoichiometry in solution and in the solid state. We also provide evidence that the most potent anion transporters are able to induce apoptosis in human cancer cells by using a selection of in vitro viability and fluorescence assays.  相似文献   

4.
Two isomeric structures of meso-tetramethyltetrakis(3-hydroxyphenyl)calix[4]pyrrole, 4-alphaalpha betabeta and 4-alphabeta alphabeta, have been isolated and characterized by 1H NMR in different solvents (CD3CN, CD3OD, and DMSO-d6) at 298 K. Standard Gibbs energies of solution derived from solubility data in various solvents were used to calculate the transfer Gibbs energy, delta(t)G(o), of these ligands using acetonitrile as the reference solvent. These results are consistent with the 1H NMR studies in different media that show chemical shift changes observed in the resonances of the NH and the OH protons of these ligands. Solvate formation was observed when these isomers were exposed to saturated atmosphere of N,N-dimethylformamide, dimethyl sulfoxide and propylene carbonate. Anion interaction involving 4-alphaalpha betabeta and 4-alphabeta alphabeta was investigated by 1H NMR in CD3CN while the complex composition was assessed through conductance measurements. Significant differences are observed in the affinity of these ligands for anions as well as in the composition of the fluoride complexes. Thus 4-alphaalpha betabeta shows selectivity for H2PO4(-) in acetonitrile while its isomer 4-alphabeta alphabeta is selective for the fluoride anion. Again the complex composition is altered for the fluoride anion when complexed with 4-alphaalpha betabeta in acetonitrile (1:1 complex) relative to 4-alphabeta alphabeta in the same solvent. The latter isomer shows an enhanced hosting ability for this anion. Thus two anions are taken up per unit of ligand. The thermodynamics of complexation of H2PO4(-) and these ligands in acetonitrile is discussed, and the results are compared with those involving calix[4]pyrrole and this anion in this solvent. It is shown that the isomers interact with two H2PO4(-) anions while one calix[4]pyrrole unit interacts with this anion. This paper demonstrates for the first time that the enthalpy parameter may be a suitable reporter of the number of hydrogen bonds formed when calix[4]pyrrole and its derivatives interact with the dihydrogen phosphate anion in acetonitrile. In moving from acetonitrile to N,N-dimethylformamide, 4-alphaalpha betabeta is unable to enter complexation with most anions, except fluoride, with which the formation of a 1:2 (ligand:anion) complex is demonstrated. The rather versatile behavior of these receptors for anions is explained on the basis of 1H NMR evidence and solvation effects. These investigations highlight the importance of the medium effect on the stability of the complex and reflect the inherent nature of the solvent and its highly significant involvement in the complexation process.  相似文献   

5.
Simple tris(indolyl)methene receptors 1-3 containing conjugated bisindole skeletons have been designed and synthesized. The anion binding and sensing properties have been studied using UV-vis spectroscopy and (1)H NMR titration technique. Compared with 3,3'-bis-indolyl phenylmethene (4), tris(indolyl)methene receptors could highly selectively detect F(-) based on two stages of proton transfer, along with stepwise drastic color changes. The introduction of the electron withdrawing or donating groups into indole unit, which tunes the acidities of the hydrogen bond sites, partially enhanced or inhibited the occurrence of the deprotonation of receptor and has a positive effect on the selectivity and sensitivity of such "proton-transfer" chemosensors for anions.  相似文献   

6.
A new tripodal receptor for anion sensing based on amide-pyridinium as recognition site and nitro-benzene as signaling unit was designed and successfully synthesized. This receptor showed high selectivity and strong binding affinity toward AcO? over the investigated anions, especially over H2PO4 ?. Addition of AcO? induced clear color change of solution from colorless to yellow, realizing the ??naked-eye?? detection. UV?CVis and 1H NMR experiments indicated the selectivity might origin from the synergistic effects arising from hydrogen bonding, electrostatic interactions and conformational change.  相似文献   

7.
A urea-based tripodal receptor L substituted with p-cyanophenyl groups has been studied for halide anions using (1)H NMR spectroscopy, density functional theory (DFT) calculations, and X-ray crystallography. The (1)H NMR titration studies suggest that the receptor forms a 1:1 complex with an anion, showing a binding trend in the order of fluoride > chloride > bromide > iodide. The interaction of a fluoride anion with the receptor was further confirmed by 2D NOESY and (19)F NMR spectroscopy in DMSO-d(6). DFT calculations indicate that the internal halide anion is held by six NH···X interactions with L, showing the highest binding energy for the fluoride complex. Structural characterization of the chloride, bromide, and silicon hexafluoride complexes of [LH(+)] reveals that the anion is externally located via hydrogen bonding interactions. For the bromide or chloride complex, two anions are bridged with two receptors to form a centrosymmetric dimer, while for the silicon hexafluoride complex, the anion is located within a cage formed by six ligands and two water molecules.  相似文献   

8.
A neutral tripodal tris(ferrocenylurea) anion receptor has been designed that can electrochemically and optically recognize sulfate and phosphate anions. The binding of the tetrahedral anion induced distinct cathodic shifts of the ferrocene/ferrocenium redox couple in chloroform, whereas the UV/Vis spectrum of the receptor showed an increase in the d–d transition band upon addition of sulfate ions. Furthermore, the anion complexes (TBA)2 ? [SO4?L] ? H2O ( 1 ) and TBA[F?L] ( 2 ; TBA=tetrabutylammonium ion) were isolated. Crystal structural analyses showed that the receptor in the two 1:1 (host/guest) complexes encapsulated sulfate or fluoride ions in the tripodal cavity through multiple hydrogen bonds. 1H NMR spectroscopic and ESI mass‐spectrometric analysis revealed strong sulfate and fluoride binding in solution.  相似文献   

9.
Novel N,N'-bisethoxyethane[12]amideferrocenophane has been synthesized by a condensation reaction and characterized by (1)H NMR and mass spectrum. The anion recognition properties of the compound are evaluated via (1)H NMR, FT-IR, and electrochemical measurement. It is found that N,N'-bisethoxyethane[12]amideferrocenophane exhibits remarkable electrochemical response to H(2)PO(4-) anion in CH(2)C(l2) or CH(3)CN solution, and response to anions can also be observed in CH(3)CN solution containing up to 15% water. Binding constants between the compound and HSO(4-) in different solutions have been determined by UV-vis spectrum titration experiments. The results indicate that the compound shows a selective recognition trend of H(2)PO(4-) > HSO(4-) (F(-)) > Br(-).  相似文献   

10.
The simple tripodal amine ligand Tris-[2-(naphthalen-1-yloxy)-ethyl]-amine (L1) was screened for anion recognition. Four crystal structures confirmed the inorganic as well as organic anion recognition in the solid state. Solid-state structures are results of supramolecular self-assembly and 3D molecular network involves C–HO and C–Hπ bonding in the crystal lattice. In the solid state, it forms a strong C–HCl and C–HO type interactions with the anions. This anion recognition was also confirmed by steady state fluorescence spectroscopy. In complex 4, L1 is confined between 2D hydrogen bonded sheet formed by pyromellitic acid anion. L1 shows unusually high selectivity toward nitrate in solution resulting in both a dramatic color change and a concomitant quenching of luminescence.  相似文献   

11.
The propensity of amine, ammonium and amide pendant arm 2,5-diamidopyrrole derivatives to act as anion receptors has been investigated; the anion-coordination ability of these species has been determined by 1H NMR titration techniques revealing a marked selectivity of the amine functionalised receptor for hydrogen sulfate anions.  相似文献   

12.
The synthesis of four fluorescent photoinduced electron transfer (PET) chemosensors 1-4 for anions is described. These are all based on a simple design employing charge neutral aliphatic or aromatic thiourea anion receptors connected to an anthracene fluorophore via a methylene spacer. Here the anion recognition occurred through 1 : 1 hydrogen bonding between the thiourea protons and the anion, as demonstrated by observing the changes in the (1)H NMR in DMSO-d(6) where the two thiourea protons were shifted downfield upon addition of anions. Whereas 1-3 were designed for the detection of anions such as fluoride, acetate or phosphate, 4 was made for the recognition of N-protected amino acids. All the sensors showed 'ideal' behaviour where only the fluorescence emission was quenched upon anion recognition, due to enhanced efficiency of electron transfer quenching from the receptor to the excited state of the fluorophore. By simply varying the nature of the thiourea substituent it was possible to modulate, or tune, the acidity of the thiourea receptor moiety, altering the sensitivity of the anion recognition. For, the anion selectivity and the degree of the fluorescence quenching were in the order of F(-) > AcO(-) > H(2)PO(4)(-), with Cl(-) or Br(-) not being detected.  相似文献   

13.
The synthesis and anion binding properties of a new family of fluorescent halogen bonding (XB) macrocyclic halo-imidazolium receptors are described. The receptors contain chloro-, bromo-, and iodo-imidazolium motifs incorporated into a cyclic structure using naphthalene spacer groups. The large size of the iodine atom substituents resulted in the isolation of anti and syn conformers of the iodo-imidazoliophane, whereas the chloro- and bromo-imidazoliophane analogues exhibit solution dynamic conformational behavior. The syn iodo-imidazoliophane isomer forms novel dimeric isostructural XB complexes of 2:2 stoichiometry with bromide and iodide anions in the solid state. Solution phase DOSY NMR experiments indicate iodide recognition takes place via cooperative convergent XB-iodide 1:1 stoichiometric binding in aqueous solvent mixtures. (1)H NMR and fluorescence spectroscopic titration experiments with a variety of anions in the competitive CD(3)OD/D(2)O (9:1) aqueous solvent mixture demonstrated the bromo- and syn iodo-imidazoliophane XB receptors to bind selectively iodide and bromide respectively, and sense these halide anions exclusively via a fluorescence response. The protic-, chloro-, and anti iodo-imidazoliophane receptors proved to be ineffectual anion complexants in this aqueous methanolic solvent mixture. Computational DFT and molecular dynamics simulations corroborate the experimental observations that bromo- and syn iodo-imidazoliophane XB receptors form stable cooperative convergent XB associations with bromide and iodide.  相似文献   

14.
The synthesis and anion-recognition properties of two new porphyrin-functionalised [2]rotaxane host molecules are described. The rotaxane compounds are prepared via a chloride-anion-templated clipping strategy. (1)H NMR titration experiments demonstrate that the rotaxane host systems exhibit high binding affinities and general selectivities for chloride anions in DMSO-d(6) or CDCl(3)/CD(3)OD solvent systems. UV-visible and fluorescence spectroscopy experiments reveal that the rotaxane receptors are ineffective as optical anion sensors. However, both receptors are shown to be capable of detecting chloride anions electrochemically via cathodic shifts in the porphyrin P/P(+) redox couples.  相似文献   

15.
The preparation of two new tripodal "pinwheel" type anion hosts based on a triethylbenzene core and bipyridinium or ethylnicotinium arms is reported. The new materials bind anions via CH...anion interactions. Complexes with Br(-) and PF(6)(-) have been characterised by X-ray crystallography as both solvates in a pure form. In the bipyridinium host CH...F interactions to PF(6)(-) induce a chiral C(3) symmetric conformation that is disrupted in the hydrate. The compound is also selective for ATP(2-) in aqueous acetonitrile.  相似文献   

16.
The tripodal system 4, in which urea fragments are appended to the three terminal amine nitrogen atoms of a tris(2-aminoethyl)amine (tren) subunit, includes a Cu(II) ion and two anions X-, according to a cascade mechanism through three well defined stepwise equilibria in a DMSO solution. The first anion X- (halide, N3-, NCS-, NO2-, H2PO4-) seeks the Cu(II) centre coordinated by the tren moiety; the second anion X- interacts with the trisurea cavity, but this occurs only if the stronger H-bond acceptors, such as N3- and H2PO4-, are used. Binding of the second X- ion is favoured by the preorganising effect exerted by the metal and disfavoured by the steric and electrostatic repulsions between the anions. Under the appropriate conditions, heterodinuclear complexes of formula [Cu(II)(4)(Cl)(H2PO4)] can be obtained in solution, in which Cl- is bound to the metal centre and H2PO4- interacts with the trisurea compartment.  相似文献   

17.
A series of novel tripodal colorimetric anion sensors based on hydrazone CHN NH groups have been synthesized and their recognition behavior with anionic guests has been studied. In DMSO solutions, sensors 1 and 2 show colorimetric responses for F, H2PO4 and AcO, while in DMSO/H2O (9:1, V/V) solutions, sensor 1 shows single selectivity for AcO. 1H NMR titration confirms that the tripodal sensors could bind anions through the collaboration of three hydrazone groups and anions residing in the central cavity of the sensors.  相似文献   

18.
We describe a multidentate tripodal ligand in which three pendant arms carrying di(2-picolyl)amine units are linked to the ortho positions of a tris(o-xylyl) scaffold, providing N(CH(2)-o-C(6)H(4)CH(2)N(CH(2)py)(2))(3) (L). Reaction of L with CuCl(2) in the presence of hexafluorophosphate anion afforded blue cubes of [(CuCl)(3)L](PF(6))(3)·5H(2)O (1). Crystallographic studies of 1 revealed that the three symmetry-related arms each coordinate a {Cu(II)Cl} unit, and two molecules of 1 are connected to one another through a Cu(μ-Cl)(2)Cu bridge, extending the molecular structure to form a two-dimensional (2-D) layer. These 2-D layers pack in an ABCABC... fashion with PF(6)(-) anions located in between. Reaction of 1 with a stoichiometric amount of perrhenate ion afforded blue plates of [(CuCl)(3)L](PF(6))(ReO(4))(2)·3H(2)O (2). Compound 2 has the same lattice structure as 1, but the tricopper unit backbone now traps one ReO(4)(-) anion through Coulombic interactions. In addition, three molecules of 2 are bridged by a perrhenate ion, forming a Cu(3)(μ(3)-ReO(4)) cluster, to give a different 2-D structure displaying a rare tridentate bridging ReO(4)(-) mode. Thus, in addition to classic perrhenate trapping through weak Coulombic interactions, 2 represents an exceptional example in which the ReO(4)(-) anion is immobilized in an extended framework through tight covalent interactions. The interlamellar PF(6)(-) anions in 1 can be exchanged with other anions including perrhenate, perchlorate, or periodate. The structural similarity between perrhenate and pertechnetate makes these materials of potential interest for pertechnetate trapping.  相似文献   

19.
The influence of the positively charged N-methylpyridinium substituent on the anion binding tendencies of urea-based receptors has been investigated by comparing molecules 1 and 2. These receptors have been studied in acetonitrile, by performing UV-vis. and (1)H NMR titrations with several anions. UV-vis. titrations have also been performed in DMSO, MeOH and CHCl(3)/CH(3)CN mixture (1/1, v/v). In the case of 1, the presence of both H-donor and H-acceptor groups (urea and pyridine, respectively) favours aggregation and the formation of dimers in the solid state. In solution, this tendency to aggregate reduces affinity for anions with respect to the similar urea-based receptor 3. The methylation of the pyridyl group of 1 leads to the pyridinium-containing receptor 2. The pyridinium positive charge enhances the acidity of urea and increases anion affinity, as evidenced by the comparison of the binding constants. Both receptors (1-2) form stable adducts with all investigated anions. However, in the case of 2, the formation of 1?:?1 adducts with basic anions, such as acetate and fluoride, is followed by a proton transfer process. Quite interestingly, deprotonation does not involve the urea group, thus preserving the 1?:?1 adduct, as demonstrated by the (1)H NMR measurements. In particular, the proton transfer process takes place at the methylene group linking the pyridinium fragment to the receptor's skeleton. (1)H NMR studies indicate the formation of a stable neutral methine species, characterised by the loss of aromaticity by the pyridyl ring. These results open new perspectives in the field of anion recognition, as receptor 2 may by applied to the monitoring of both bound anion (through the urea unit) and excess anion in solution (through the development of the yellow methine species).  相似文献   

20.
Calix[4]arene derivatives containing amide ferrocene units at the wide rim and ethyl ester groups at the narrow rim, L1-L3, were synthesized and their anion binding and sensing properties were investigated. It was found from (1)H NMR titrations that L1-L3 were able to bind selectively with carboxylate anions. Moreover, cyclic voltammetry and square wave voltammetry showed that L1-L3 were able to act as electrochemical sensors for carboxylate anions. [structure: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号