首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
《Physics letters. A》2004,328(6):432-436
A microcanonical finite-size scaling ansatz is discussed. It exploits the existence of a well-defined transition point for systems of finite size in the microcanonical ensemble. The best data collapse obtained for small systems yields values for the critical exponents in good agreement with other approaches. The exact location of the infinite system critical point is not needed when extracting critical exponents from the microcanonical finite-size scaling theory.  相似文献   

2.
In the microcanonical ensemble, suitably defined observables show nonanalyticities and power-law behavior even for finite systems. For these observables, a microcanonical finite-size scaling theory is established and combined with the experimentally observed power-law behavior. Scaling laws are obtained which relate exponents of the finite system and critical exponents of the infinite system to the system-size dependence of the affiliated microcanonical observables.  相似文献   

3.
Typically, in order to obtain finite-size scaling laws for quantities in the microcanonical ensemble, an assumption is taken as a starting point. In this paper, consistency of such a Microcanonical Finite-Size Scaling Assumption with its commonly accepted canonical counterpart is shown, which puts Microcanonical Finite-Size Scaling on a firmer footing.  相似文献   

4.
We have been studying the three-dimensional Ising model using some finite-size scaling ideas. The simulation is done by a fast microcanonical method. Here we present our results for the critical exponents and.  相似文献   

5.
6.
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model,the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method.In the simulation,noise reduction technique is used in order to eliminate the crossover effect.Our results show that due to the existence of the finite-size effect,the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256.This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys.Rev.E 70 031607].In addition,our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.  相似文献   

7.
This paper shows for a general class of statistical mechanical models that when the microcanonical and canonical ensembles are nonequivalent on a subset of values of the energy, there often exists a generalized canonical ensemble that satisfies a strong form of equivalence with the microcanonical ensemble that we call universal equivalence. The generalized canonical ensemble that we consider is obtained from the standard canonical ensemble by adding an exponential factor involving a continuous function g of the Hamiltonian. For example, if the microcanonical entropy is C2, then universal equivalence of ensembles holds with g taken from a class of quadratic functions, giving rise to a generalized canonical ensemble known in the literature as the Gaussian ensemble. This use of functions g to obtain ensemble equivalence is a counterpart to the use of penalty functions and augmented Lagrangians in global optimization. linebreak Generalizing the paper by Ellis et al. [J. Stat. Phys. 101:999–1064 (2000)], we analyze the equivalence of the microcanonical and generalized canonical ensembles both at the level of equilibrium macrostates and at the thermodynamic level. A neat but not quite precise statement of one of our main results is that the microcanonical and generalized canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the generalized microcanonical entropy s–g is concave. This generalizes the work of Ellis et al., who basically proved that the microcanonical and canonical ensembles are equivalent at the level of equilibrium macrostates if and only if they are equivalent at the thermodynamic level, which is the case if and only if the microcanonical entropy s is concave.  相似文献   

8.
Phase equilibria of fluids with variable size polydispersity have been investigated by means of Monte Carlo simulations. In the models, spherical particles of different additive diameters interact through Lennard-Jones and hard sphere Yukawa intermolecular potentials and the underlying distribution of particle sizes is a Gaussian. The Gibbs ensemble Monte Carlo technique has been applied to determine the phase coexistence far below the critical temperature. Critical points have been estimated by finite-size scaling analysis using histogram reweighting for NpT simulation data. In order to achieve efficient sampling in the vicinity of the critical points, the hyper-parallel tempering scheme has been utilized.  相似文献   

9.
The consequences of Schonmann's new proof that the critical threshold is unity for certain bootstrap percolation models are explored. It is shown that this proof provides an upper bound for the finite-size scaling in these systems. Comparison with data for one case demonstrates that this scaling appears to give the correct asymptotics. We show that the threshold for a finite system of sizeL scales asO[ln(lnL)] for the isotropic model in three dimensions where sites that fail to have at least four neighbors are culled.Related systems have been studied in the context of cellular automata.(4)  相似文献   

10.
We reexamine the range of validity of finite-size scaling in the lattice model and the field theory below four dimensions. We show that general renormalization-group arguments based on the renormalizability of the theory do not rule out the possibility of a violation of finite-size scaling due to a finite lattice constant and a finite cutoff. For a confined geometry of linear size L with periodic boundary conditions we analyze the approach towards bulk critical behavior as at fixed for where is the bulk correlation length. We show that for this analysis ordinary renormalized perturbation theory is sufficient. On the basis of one-loop results and of exact results in the spherical limit we find that finite-size scaling is violated for both the lattice model and the field theory in the region . The non-scaling effects in the field theory and in the lattice model differ significantly from each other. Received 5 February 1999  相似文献   

11.
We consider two single-species reaction-diffusion models on one-dimensional lattices of lengthL: the coagulation-decoagulation model and the annihilation model. For the coagulation model the system of differential equations describing the time evolution of the empty interval probabilities is derived for periodic as well as for open boundary conditions. This system of differential equations grows quadratically withL in the latter case. The equations are solved analytically and exact expressions for the concentration are derived. We investigate the finite-size behavior of the concentration and calculate the corresponding scaling functions and the leading corrections for both types of boundary conditions. We show that the scaling functions are independent of the initial conditions but do depend on the boundary conditions. A similarity transformation between the two models is derived and used to connect the corresponding scaling functions.  相似文献   

12.
A scaling hypothesis on finite-size scaling in the presence of a dangerous irrelevant variable is formulated for systems with long-range interaction and general geometryL d–d× d . A characteristic length which obeys a universal finite-size scaling relation is defined. The general conjectures are based on exact results for the mean spherical model with inverse power law interaction.  相似文献   

13.
The specific heat of a 2,6-lutidine-water mixture is measured in the vicinity of the lower critical mixing point in the bulk and in porous media. The results of the measurements are interpreted by finite-size scaling. In particular, a universal function of the ratio t/t* [t is the dimensionless deviation of the temperature from the specific-heat maximum T m (L), and t* is the characteristic dimensionless temperature, which depends on the pore size] describing the behavior of the specific heat in the vicinity of the critical point in porous media with different pore sizes is obtained. The results obtained are consistent with the predictions of finite-size scaling and with the data from a numerical calculation of the specific heat of the finite three-dimensional Ising model. Zh. éksp. Teor. Fiz. 113, 1071–1080 (March 1998)  相似文献   

14.
We present simple derivations of the classical microcanonical ensemble formulae for fluctuations which involve the kinetic energy and microscopic pressure function. The new derivations, which confirm earlier results of Lebowitz et al. [1] and Cheung [2], proceed in a direct way from basic microcanonical ensemble theory without recourse to fluctuation expressions of other ensemble theories. The method developed is applicable to shell ensembles in general.  相似文献   

15.
Using field theory and Monte Carlo (MC) simulation we investigate the finite-size effects of the magnetization M for the three-dimensional Ising model in a finite cubic geometry with periodic boundary conditions. The field theory with infinite cutoff gives a scaling form of the equation of state where is the reduced temperature, h is the external field and L is the size of system. Below and at the theory predicts a nonmonotonic dependence of f(x,y) with respect to at fixed and a crossover from nonmonotonic to monotonic behaviour when y is further increased. These results are confirmed by MC simulation. The scaling function f(x,y) obtained from the field theory is in good quantitative agreement with the finite-size MC data. Good agreement is also found for the bulk value at . Received 20 July 1999 and Received in final form 11 November 1999  相似文献   

16.
Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called “exactness of the mean-field theory”. It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the α-Potts model with annealed vacancies and the α-Potts model with invisible states.  相似文献   

17.
We study the behavior of systems in which the interaction contains a long-range component that does not dominate the critical behavior. Such a component is exemplified by the van der Waals force between molecules in a simple liquid-vapor system. In the context of the mean spherical model with periodic boundary conditions we are able to identify, for temperatures close above T c, finite-size contributions due to the subleading term in the interaction that are dominant in this region decaying algebraically as a function of L. This mechanism goes beyond the standard formulation of the finite-size scaling but is to be expected in real physical systems. We also discuss other ways in which critical point behavior is modified that are of relevance for analysis of Monte Carlo simulations of such systems. Received 21 November 2000 and Received in final form 28 February 2001  相似文献   

18.
The ground state entropy of the 2D Ising spin glass with +1 and −1 bonds is studied for L×M square lattices with LM and p=0.5, where p is the fraction of negative bonds, using periodic and/or antiperiodic boundary conditions. From this we obtain the domain wall entropy as a function of L and M. It is found that for domain walls which run in the short, L direction, there are finite-size scaling functions which depend on the ratio , where d S =1.22±0.01. When M is larger than L, very different scaling forms are found for odd L and even L. For the zero-energy domain walls, which occur when L is even, the probability distribution of domain wall entropy becomes highly singular, and apparently multifractal, as becomes large.  相似文献   

19.
The standard two-dimensional uniformly driven diffusive model is simulated extensively for much larger systems with a multi-spin coding technique. The nonequilibrium phase transition is analyzed with anisotropic finite-size scaling both at the critical point and off the critical point. The field-theoretic values of critical exponents fit the data well at and aboveT c . BelowT c the scaling is rather difficult and the results are not conclusive.  相似文献   

20.
Numerical investigations of critical phenomena might lead to different leading correction-to-scaling terms, depending on the type of analysis. We discuss which leading correction-to-scaling behavior is expected for finite system sizes, using two-dimensional percolation as our main example. It turns out that a finite-size scaling from length L to L - 1 is less perturbed by correction-to-scaling terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号