首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

3.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

4.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

5.
Novel chromeno[2,3‐d]pyrimidinyl and bis(chromeno[2,3‐d]pyrimidinyl)phosphines and chromeno[2′,3′:4,5]pyrimido[2,1‐d][1,3,5,2]triazaphosphinine were obtained in a simple one‐pot procedure via treatment of 2‐imino‐2H‐chromene‐3‐carboxamide with phenyl phosphorus isothiocyanates. Possible reaction mechanisms were proposed. The structures of the obtained products were confirmed by elemental analyses and spectral tools.  相似文献   

6.
Silylhydrazines and Dimeric N,N′‐Dilithium‐N,N′‐bis(silyl)hydrazides – Syntheses, Reactions, Isomerisations Di‐tert.‐butylchlorosilane reacts with dilithiated hydrazine in a molar ratio to give the N,N′‐bis(silyl)hydrazine, [(Me3C)2SiHNH]2, ( 5 ). Isomeric tris(silyl)hydrazines, N‐difluorophenylsilyl‐N′,N′‐bis(dimethylphenylsilyl)hydrazine ( 7 ) and N‐difluorophenylsilyl‐N,N′‐bis(dimethylphenylsilyl)hydrazine ( 8 ) are formed in the reaction of N‐lithium‐N′‐N′‐bis(dimethylphenylsilyl)hydrazide and F3SiPh. Isomeric bis(silyl)hydrazines, (Me3C)2SiFNHNHSiMe2Ph ( 9 ) and (Me3C)2‐ SiF(PhMe2Si)N–NH2 ( 10 ) are the result of the reaction of di‐tert.‐butylfluorosilylhydrazine and ClSiMe2Ph in the presence of Et3N. Quantum chemical calculations for model compounds demonstrate the dyotropic course of the rearrangement. The monolithium derivative of 5 forms a N‐lithium‐N′,N′‐bis(silyl)hydrazide ( 11 ). The dilithium salts of 5 ( 13 ) and of the bis(tert.‐butyldiphenylsilyl)hydrazine ( 12 ) crystallize as dimers with formation of a central Li4N4 unit. The formation of 12 from 11 occurs via a N′ → N‐silyl group migration. Results of crystal structure analyses are reported.  相似文献   

7.
Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2]2 with 1,1′‐diphenyl‐3,3′‐methylenediimidazolium diiodide in non‐alcohol solvents, in the presence of base, led to the formation of bis‐carbene complex [Cp*Rh(bis‐NHC)I]I (bis‐NHC=1,1′‐diphenyl‐4,4′‐methylenediimidazoline‐5,5′‐diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C?N bond is observed, affording ether‐functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1′‐diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C?N bond and, based on additional experimental data, a SN2 mechanism for the reaction is tentatively proposed.  相似文献   

8.
4,4′‐(Methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxylic acid and 4,4′‐(methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxamide have been synthesized by the acid‐catalyzed condensation of 4‐amino‐1,2,5‐oxadiazole‐3‐carboxylic acid and 4‐amino‐1,2,5‐oxadiazole‐3‐carboxamide with formaldehyde. The crystal and molecular structures of the compounds have been determined by X‐ray crystallography. 4,4′‐(Methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxylic acid crystallizes in space group C2/c, and its measured density is 1.800 g/mL, significantly above the calculated value of 1.68 g/mL. 4,4′‐(Methylenediimino)bis‐1,2,5‐oxadiazole‐3‐carboxamide crystallizes in space group P21/c, and its measured density is 1.623 g/mL, in close agreement with the calculated value of 1.64 g/mL. The structure of the starting amide 4‐amino‐1,2,5‐oxadiazole‐3‐carboxamide has also been determined. These data, combined with literature data, suggest that ortho‐aminocarboxylic acids have unusually high densities, but the reasons for this are unclear.  相似文献   

9.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

10.
The first synthesis of 4,8‐dihydro‐bis‐furazano[3,4‐b:3′4′‐e]pyrazine bearing 2,2‐bis(methoxy‐NNO‐azoxy)ethyl groups has been developed. These compounds are obtained by aza‐Michael reaction of 1,1‐bis(methoxy‐NNO‐azoxy)ethene or its equivalents, such as 2,2‐bis(methoxy‐NNO‐azoxy)ethanol derivatives, with 4,8‐dihydro‐bis‐furazano[3,4‐b:3′4′‐e]pyrazine.  相似文献   

11.
Previously unknown 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazoline]‐2,2′‐(7′H)‐diones and their N‐substituted analogues were obtained via reaction of 6‐R1‐3‐(2‐aminophenyl)‐1,2,4‐triazin‐5‐ones with isatin and its substituted derivatives. It was shown that alkylation of 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′‐(7′H)‐diones by N‐R3‐chloroacetamides or chloroacetonitrile in the presence of а base proceeds by N‐1 atom of isatin fragment. The spectral properties (1H and 13C NMR spectra) of synthesized compounds were studied, and features of spectral patterns were discussed. The high‐effective anticonvulsant and radical scavenging agents among 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′(7′H)‐diones and their N‐substituted derivatives were detected. It was shown that compounds 2.2 , 2.8 , and 3.1 exceed or compete the activity of the most widely used in modern neurology drug—lamotrigine on the pentylenetetrazole‐induced seizures model. The aforementioned fact may be considered as a reason for further profound study of synthesized compounds using other pathology models.  相似文献   

12.
5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐tetramethyl spirobisindane (TTSBI) was polycondensed with 4,4′‐dichlorodiphenyl sulfone (DCDPS) or with 4,4′‐bis(4‐chlorophenyl sulfonyl) biphenyl (BCSBP) in DMSO. Concentration and feed ratio were optimized to avoid gelation and to obtain a maximum yield of multicyclic polyethers free of functional groups. Regardless of these reaction conditions, only low fractions of perfect multicycles were obtained from DCDPS apparently due to steric hindrance of ring closure. Under the same conditions high fractions of perfect multicycles were achieved with the longer and more flexible DCSBP. The reaction products were characterized by MALDI‐TOF mass spectrometry, 1H‐NMR spectroscopy viscosity, and DSC measurements. Relatively low glass transition temperatures (Tgs ≈ 160–175 °C) were found. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3732–3739, 2008  相似文献   

13.
Convenient syntheses of 3‐substituted ethyl 4‐oxo‐2‐thioxo‐1,2,3,4,5,6,7,8‐octahydropyrid[4′,3′:4,5]thieno[2,3‐d]pyrimidine‐7‐carboxylates 3a, b, 6, 11–13 , ethyl 3‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5 H‐pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8‐7H‐carboxylate ( 4 ), and ethyl 2‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5H‐pyrido[4′,3′:4,5]thieno[2, 3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8[7H]carboxylate ( 8 ) from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahythieno[2,3‐c]pyridine‐3,6‐dicarboxylate ( 1 ) are reported. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:201–207, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10131  相似文献   

14.
In the title compound, [Cu2I2(C11H16N4)2], each of the two crystallographically equivalent Cu atoms is tetrahedrally coordinated by two N atoms from one 1,1′‐methyl­ene­bis(3,5‐di­methyl‐1H‐pyrazole) ligand and two bridging iodide anions. The mol­ecule has a crystallographic center of symmetry located at the mid‐point of the Cu·Cu line. One H atom of the CH2 group of the 1,1′‐methyl­ene­bis(3,5‐di­methyl‐1H‐pyrazole) ligand interacts with an iodide ion in an adjacent mol­ecule to afford pairwise intermolecular C—H·I contacts, thereby forming chains of mol­ecules running along the [101] direction.  相似文献   

15.
Two kinds of chiral 1,1′‐binaphthol (BINOL)‐based polymer enantiomers were designed and synthesized by the polymerization of 5,5′‐((2,2′‐bis (octyloxy)‐[1,1′‐binaphthalene]‐3,3′‐diyl)bis(ethyne‐2,1‐diyl))bis(2‐hydroxybenzaldehyde) ( M1 ) with alkyl diamine ( M2 ) via nucleophilic addition–elimination reaction. The resulting chiral polymers can exhibit mirror image cotton effects either in the absence or in the presence of Zn2+ ion. Almost no fluorescence or circularly polarized luminescence (CPL) emission could be observed for two chiral BINOL‐based polymer enantiomers in the absence of Zn2+. Interestingly, the chiral polymers can show strong fluorescence and CPL response signals upon the addition of Zn2+, which can be attributed to Zn2+‐coordination fluorescence enhancement effect. This work can develop a new strategy on the design of the novel CPL materials via metal‐coordination reaction. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1282–1288  相似文献   

16.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Within this contribution on bis(oxadiazoles) we report on bis‐hydroxylammonium 5,5′‐dinitro‐methyl‐3,3′‐bis(1,2,4‐oxadiazolate), which (to the best of our knowledge) shows the highest density (2.00 g cm?3 at 92 K, 1.95 g cm?3 at RT) ever reported for an ionic CHNO explosive. Also the corresponding bis(ammonium) salt shows an outstanding density of 1.95 g cm?3 (173 K). The reaction of the 3,3′‐bis(1,2,4‐oxadiazolyl)‐5,5′‐bis(2,2′‐dinitro)‐diacetic acid diethyl ester with different nitrogen‐rich bases, such as ammonia, hydrazine, hydroxylamine, and triaminoguanidine causes decarboxylation followed by the formation of the corresponding salts (cation/anion stoichiometry 2:1). The reactions are performed at ambient temperature in H2O/MeOH mixtures and furnish qualitatively pure products showing characteristics of typical secondary explosives. The obtained compounds were characterized by multinuclear NMR spectroscopy, IR and Raman spectroscopy, as well as mass spectrometry. Single‐crystal X‐ray diffraction studies were performed and the structures of all compounds were determined at low temperatures. The thermal stability was measured by differential scanning calorimetry (DSC). The sensitivities were explored by using the BAM drophammer and friction test. The heats of formation were calculated by the atomization method based on CBS‐4M enthalpies. With these values and the X‐ray densities, several detonation parameters such as the detonation pressure, velocity, energy, and temperature were computed using the EXPLO5 code.  相似文献   

18.
Crystal Structures and Spectroscopic Properties of 2λ3‐Phospha‐1, 3‐dionates and 1, 3‐Dionates of Calcium ‐ Comparative Studies on the 1, 3‐Diphenyl and 1, 3‐Di(tert‐butyl) Derivatives A hydrogen‐metal exchange between dibenzoylphosphane and calcium carbide in tetrahydrofuran (THF) followed by addition of the ligand 1, 3, 5‐trimethyl‐1, 3, 5‐triazinane (TMTA) furnishes the binuclear complex bis[(tmta‐N, N′, N″)calcium bis(dibenzoylphosphanide)] ( 1a ) co‐crystallizing with benzene. Similarly, reaction of bis(2, 2‐dimethylpropionyl)phosphane with bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in 1, 2‐dimethoxyethane (DME) gives bis(dme‐O, O′)calcium bis[bis(2, 2‐dimethylpropionyl)phosphanide] ( 1b ) in high yield. The carbon analogues 1, 3‐diphenylpropane‐1, 3‐dione (dibenzoylmethane) or 2, 2, 6, 6‐tetramethylheptane‐3, 5‐dione (dipivaloylmethane) and bis(thf‐O)calcium bis[tris(trimethylsilylmethyl)zincate] in DME afford bis(dme‐O, O′)calcium bis(dibenzoylmethanide) ( 2a ) and the binuclear complex (μ‐dme‐O, O′)bis[(dme‐O, O′)calcium bis(dipivaloylmethanide)] ( 2b ), respectively. Dialkylzinc formed during the metalation reaction shows no reactivity towards the 1, 3‐dionates 2a and 2b . Finally, from the reaction of the unsymmetrically substituted ligand 2‐(methoxycarbonyl)cyclopentanone and bis(thf‐O)calcium bis[bis(trimethylsilyl)amide] in toluene, the trinuclear complex 3 is obtained, co‐crystallizing with THF. The β‐ketoester anion bridges solely via the cyclopentanone unit.  相似文献   

19.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

20.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号