首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - This work is a first attempt to understand the mechanism of metformin thermal decomposition under inert conditions. Thermal gravimetric analysis...  相似文献   

2.
The thermal decomposition of phenylchlorodiazirine (1), phenyl-n-butyldiazirine (2), and 2-adamantane-2,3'-[3H]diazirine (3) has been studied in solution in the presence of C(60). The C(60) probe technique indicates that in the decomposition diazirine 1 yielded exclusively phenylchlorocarbene, diazirine 2 yielded mainly a diazo intermediate, and diazirine 3 yielded a mixture of carbene and diazo compound. In the case of diazirine 2, 13% of (E)-1-phenyl-1-pentene resulted from the direct thermal rearrangement of diazirine without the participation of a carbene. As well, the thermal decomposition of these diazirines has been studied theoretically with ab initio and density functional methods. The experimental results are broadly in agreement with the theoretical predictions. The calculations further indicate that the rebound reaction between carbene and molecular nitrogen leading to the formation of a diazo intermediate is an important reaction in the gas-phase decomposition of diazirine.  相似文献   

3.
A series of substituted 2-nitrosiminobenzothiazolines (2) were synthesized by the nitrosation of the corresponding 2-iminobenzothiazolines (6). Thermal decomposition of 2a--f and of the seleno analogue 7 in methanol and of 3-methyl-2-nitrosobenzothiazoline (2a) in acetonitrile, 1,4-dioxane, and cyclohexane followed first-order kinetics. The activation parameters for thermal deazetization of 2a were measured in cyclohexane (Delta H(++) = 25.3 +/- 0.5 kcal/mol, Delta S(++) = 1.3 +/- 1.5 eu) and in methanol (Delta H(++) = 22.5 +/- 0.7 kcal/mol, Delta S(++) = -12.9 +/- 2.1 eu). These results indicate a unimolecular decomposition and are consistent with a proposed stepwise mechanism involving cyclization of the nitrosimine followed by loss of N(2). The ground-state conformations of the parent nitrosiminothiazoline (9a) and transition states for rotation around the exocyclic C==N bond, electrocyclic ring closure, and loss of N(2) were calculated using ab initio molecular orbital theory at the MP2/6-31G* level. The calculated gas-phase barrier height for the loss of N(2) from 9a (25.2 kcal/mol, MP4(SDQ, FC)/6-31G*//MP2/6-31G* + ZPE) compares favorably with the experimental barrier for 2a of 25.3 kcal/mol in cyclohexane. The potential energy surface is unusual; the rotational transition state 9a-rot-ts connects directly to the orthogonal transition state for ring-closure 9aTS. The decoupling of rotational and pseudopericyclic bond-forming transition states is contrasted with the single pericyclic transition state (15TS) for the electrocyclic ring-opening of oxetene (15) to acrolein (16). For comparison, the calculated homolytic strength of the N--NO bond is 40.0 kcal/mol (MP4(SDQ, FC)/6-31G*//MP2/6-31G* + ZPE).  相似文献   

4.
An experimental study of the thermal decomposition of a β-hydroxy alkene, 3-buten-1-ol, in m-xylene solution, has been carried out at three different temperatures: 553.15, 573.15, and 593.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (27.34 ± 1.24)–(19,328 ± 712) (kJ mol?1T ?1. A computational study has been performed at the MP2/6-31+G(d) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. The Arrhenius equation obtained theoretically, ln k (s?1) = (28.252 ± 0.025)–(19,738.0 ± 14.4) (kJ mol?1T ?1, agrees very satisfactorily with the experimental one. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis which provides the natural atomic charges and the Wiberg bond indices used to follow the progress of the reaction. The enthalpy of the reaction has been calculated using experimental values taken from literature and theoretic calculations. The agreement between both values is satisfactory.  相似文献   

5.

Zinc oxalate dihydrate has been synthesized by precipitation method and characterized by FT-IR, XRD and SEM-EDAX. The kinetics of dehydration and decomposition were studied by non-isothermal DSC technique in the N2 atmosphere at different heating rates: 4, 6, 8 and 10 K min?1. The product of thermal decomposition, ZnO has been characterized by UV, TEM, SEM-EDAX and XRD and found that the particles are in nanometer range. The activation energy for thermal dehydration and decomposition was calculated by various isoconversional methods. Furthermore, structure and reactivity of zinc oxalate have also been investigated using B3LYP/631+g (d, p) level of theory with the help of Gaussian 09W software. The theoretical investigation indicates that most probably the compound decomposes to ZnO along with the evolution of CO2 and CO.

  相似文献   

6.
The thermal decompositions of glucose and fructose were studied by means of the Derivatograph. From the melting temperature up to 300 these monosaccharides decompose and give brown caramel matter. The TG curves as functions of time were taken at various heating rates (0.5–10/min) by the Derivatograph and the activation energies of the decompositions were determined by Ozawa's method.
Zusammenfassung Die thermische Zersetzung von Glukose und Fruktose wurde mit Hilfe des Derivatographen studiert. Diese Monosaccharide erleiden von der Schmelztemperatur bis zu 300 C eine Zersetzung und ergeben braune Karamelstoffe. Die verschiedenen Zeitspannen zugeordneten TG-Kurven wurden vom Derivatographen bei verschiedenen Aufheizgeschwindigkeiten (von 0.5C/min bis zu 10C/min) registriert und die Aktivierungsenergie der Zersetzung wurde mittels der Methode von Ozawa bestimmt.

Résumé On a étudié la décomposition thermique du glucose et du fructose à l'aide du Derivatograph. Ces monosaccharides subissent une décomposition à partir de la température de fusion jusqu' à 300C en donnant des caramels bruns. Les courbes TG ont été enregistrées en fonction du temps avec diverses vitesses de chauffage (de 0.5 C/min jusqu'à 10C/min) et l'énergie d'activation de la décomposition a été déterminée par la méthode d'Ozawa.

. 300 . ( 0,5/ 10/) .
  相似文献   

7.
Coinage and alkali metal mixed clusters, M4Na- (M = Cu, Au) have been investigated experimentally using photoelectron spectroscopy and computationally at correlated ab initio levels. The related Cu4Li-, Ag4Li-, Ag4Na-, and Au4Li- clusters as well as the neutral Cu4Li2 and Cu4Na2 clusters have also been studied computationally. The calculations show that the two lowest isomers of the negatively charged clusters include a pyramidal C4v structure and a planar C2v species. For Cu4Li- and Cu4Na-, the C4v structure is calculated at correlated ab initio level to be 30.9 and 16.9 kJ/mol below the planar C2v isomer, whereas the planar isomers of Au4Li- and Au4Na- are found to be 29.7 and 49.4 kJ/mol below the pyramidal ones. For Ag4Li- and Ag4Na-, the pyramidal isomers are the lowest ones. Comparison of the calculated and measured photoelectron spectra of Cu4Na- and Au4Na- shows that the pyramidal Cu4Na- cluster of C4v symmetry and the planar Au4Na- of C2v symmetry are detected experimentally. Calculations of the magnetically induced current density in Cu4Li- and Cu4Li2 using the Gauge-Including Magnetically Induced Current (GIMIC) method show that strong ring currents are sustained mainly by the highest-occupied molecular orbital primarily derived from the Cu 4s. The GIMIC calculations thus show that the Cu4(2-) ring is -aromatic and that the d orbitals do not play any significant role for the electron delocalization effects. The present study does not support the notion that the square-planar Cu4(2-) is the first example of d-orbital aromatic molecules.  相似文献   

8.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation, Delta(f)H(m)degrees, of crystalline 2-, 3- and 4-chlorobenzophenone and 4,4'-dichlorobenzophenone were derived from the standard molar energies of combustion, Delta(c)U(m)degrees, in oxygen, to yield CO(2)(g), N(2)(g), and HCl x 600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpy of sublimation, Delta(cr)(g)H(m)degrees, of the compound 2-chlorobenzophenone. For the other three compounds, the standard molar enthalpies of sublimation, at T = 298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapor pressures of these compounds, measured by the Knudsen-effusion technique. From the values of Delta(f)H(m)degrees and Delta(cr)(g)H(m)degrees, the standard molar enthalpies of formation of all the compounds, in the gaseous phase, Delta(f)H(m)degrees (g), at T = 298.15 K, were derived. These values were also calculated by using the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computational approach.  相似文献   

9.
The overall chemical equation representing the thermal decomposition of potassium permanganate up to ≈300°C is given approximately by: 10 KMnO4→2.65 K2MnO4+[2.35 K2O·7.35·MnO2.05]+6O2, the bracketed material being δ-MnO2. The experimental mass loss in air is ≈12% and the enthalpy of decomposition is ≈10 kJ/mol of KMnO4. Analysis of published kinetic studies of the decomposition show that most of the results can be represented by the Prout-Tompkins equation ln (x/(1−x))=k T t+constant, and insertion of the rate constants into the Arrhenius equation gives an activation energy for decomposition of ≈150 kJ/mol of KMnO4. Although the kinetic studies have always been interpreted in terms of a single type of chemical decomposition, with the different rates encountered during the course of the decomposition ascribed to physical effects, X-ray diffraction studies by Boldyrev and co-workers have shown that the reaction actually occurs in two stages, with essentially all the KMnO4 transformed into K3(MnO4)2, δ-MnO2 and O2 in the first stage, and the K3(MnO4)2 then decomposing into K2MnO4 and more δ-MnO2 and O2 in the second stage. We have confirmed the Boldyrev diffraction results and extended them by measuring the kinetics of the appearance and disappearance of K3(MnO4)2 by an X-ray diffraction method. Our earlier isotopes studies have shown that the oxygen molecules come from oxygen atoms produced by breaking Mn−O bonds in different permanganate ions i.e. the decomposition mechanism is interionic. We conclude by summarising what is, and is not, currently known about the thermal decomposition of potassium permanganate up to ≈300°C. In celebration of the 60th birthday of Dr. Andrew K. Galwey  相似文献   

10.
硝基甲烷热解机理的量子化学研究   总被引:3,自引:0,他引:3  
肖鹤鸣  江明 《化学学报》1989,47(12):1164-1169
用ab initio和NMDO 两种方法, 对CH~3NO~2沿C-N键断裂的热解反应过程 进行了较细致的计算研究。所得势能曲线(E-Rc-n) 彼此一致,并与Kaufman等[1]的近期结果相符。将各单点下所得正则离域化处理, 发现当C和N原子间的距离Rc-n=1.6-1.8A时, 定域成键σc-n-MO从能级较低的五的个占有MO跃升为HOMO(即第16个MO)。考察占有末占有前沿轨道 能级和位相, 可推在CH~3NO~2热 解的初抬阶段, 通过分子重排成C-O键的可能性较小 。其热解引发步骤可能是生成.CH~3和.NO~2双自由基。  相似文献   

11.
Polystyrene peroxide has been synthesized and its decomposition has been studied by thermogravimetry and differential thermal analysis. Polystyrene peroxide has been found to decompose exothermically at about 110°C. The activation energy for the decomposition was estimated to be 30 kcal/mole both by the Jacobs and Kureishy method and by fitting the α versus time curves to the first-order kinetic equation. This suggests that the rate-controlling step in the decomposition of polystyrene peroxide is cleavage of the OO bond.  相似文献   

12.
The thermal decomposition kinetics of sodium oxalate (Na2C2O4) has been studied as a function of concentration of dopant, phosphate, at five different temperatures in the range 783–803 K under isothermal conditions by thermogravimetry (TG). The TG data were subjected to both model-fitting and model-free kinetic methods of analysis. The model-fitting analysis of the TG data of all the samples shows that no single kinetic model describes the whole α versus t curve with a single rate constant throughout the decomposition reaction. Separate kinetic analysis shows that Prout–Tompkins model best describes the acceleratory stage of the decomposition, while the decay region is best fitted with the contracting cylinder model. Activation energy values were evaluated by both model-fitting and model-free kinetic methods. The observed results favour a diffusion-controlled mechanism for the thermal decomposition of sodium oxalate.  相似文献   

13.
The kinetics for the gas-phase reaction of phenyl radicals with allene has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum-chemical calculations. The absolute rate constant measured by the CRDS technique can be expressed by the following Arrhenius equation: kallene (T=301-421 K)=(4.07+/-0.38)x10(11) exp[-(1865+/-85)/T] cm3 mol(-1) s(-1). Theoretical calculations, employing high level G2M energetic and IRCMax(RCCSD(T)//B3LYP-DFT) molecular parameters, indicate that under our experimental conditions the most preferable reaction channel is the addition of phenyl radicals to the terminal carbon atoms in allene. Predicted total rate constants agree with the experimental values within 40%. Calculated total and branching rate constants are provided for high-T kinetic modeling.  相似文献   

14.
Poly(chlorophydroquinone terephthalate) is an aromatic polyester containing mainly chlorohydroquinone and terephthalate. Thermal stability of this aromatic polyester has been a problem during the processing. In order to characterize the melt reactions of this polyester, the thermal degradation of the model compound chlorohydroquinone dibenzoate was studied. The chlorohydroquinone dibenzoate was characterized by high resolution 13C-NMR. All experiments for studyng degradation of chlorohydroquinone dibenzoate were designed to test the following environmental parameters: (1) atmosphere, (2) temperature, (3) time, (4) additives, (5) container material. The analysis of the degradation products were carried out mainly using NMR; in some cases GC/MS and HPLC were also used to aid in separation and identification of the degradation products. The major degradation products produced in various experimental conditions were identified as chlorohydroquinone benzoates, hydroquinone dibenzoate, dichlorohydroquinone dibenzoate, 9-fluorenone, benzoic acid, Fries products, and hydrogen chloride  相似文献   

15.
16.
17.
Calix[4]arene-based receptors linked to amide and pyridine moieties have been synthesised in four steps from calix[4]arene, and characterised by 1H and 13C NMR spectroscopy. The recognition properties of these receptors towards different anions were evaluated using 1H NMR and computational studies. The receptors show modest selectivities towards dihydrogen phosphate versus carboxylates.  相似文献   

18.
Thermal stability and decomposition kinetics for two energetic materials, potassium nitroform (KNF) and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), were investigated to obtain information on their safety for handling, storage, and use. Differential scanning calorimetry (DSC) and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) techniques have been used to study thermal behavior of these energetic compounds. The results of TG analysis revealed that the main thermal degradation for the KNF occurs during two temperature ranges of 270?C330 and 360?C430?°C. Meanwhile, NTO decomposes completely in temperature range of 250?C300 °C. TG-DTA analysis of KNF indicates that this energetic compound dehydrated (at about 108?°C) before its decomposition. However, NTO is thermally stable until its decomposition. The decomposition kinetic of energetic materials was studied by non-isothermal DSC under various heating rates. Kinetic parameters such as activation energy and frequency factor for thermal decomposition of energetic compounds were obtained via the methods proposed by ASTM E696 and Starink. Also, thermodynamic parameters correspond to the activation of thermal decomposition and critical ignition temperatures of the compounds were obtained.  相似文献   

19.
20.
The kinetics for the gas-phase reaction of phenyl radical with propyne has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum chemical calculations. Absolute rate constants measured by the CRDS technique can be expressed by the following Arrhenius equation: (k/cm(3) mol(-1) s(-1)): k(propyne)(T=301-428 K)=(3.68+/-0.92) x 10(11)exp[-(1685+/-80)/T]. The experiment is unable to distinguish between the possible reactive channels, but theory indicates that phenyl radicals preferably add to the unsaturated terminal carbon atom in propyne under our experimental conditions. Theoretical kinetic calculations, employing high-level G2M(RCC, RMP2) and G3 energetic and IRCMax(RCCSD(T)//B3LYP-DFT) molecular parameters, reproduce the total experimental rate constants within a factor of three. Calculated total and branching rate constants are provided for high-T kinetic modeling. Addition reactions of phenyl to C3H4 are estimated to be less important molecular-growth pathways in high-T conditions (T>1000 K) in comparison to the C6H5 + C2H2 reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号