首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarbonitriles 1a‐d with α,β‐unsaturated carbonyl compounds in the presence of sodium ethoxide (0.1 equivalent) gave the corresponding Michael adducts 2a‐d , 3a‐d and 4a‐d. Compounds 2a‐d and 3a‐c reacted with sodium alkoxide (1 equivalent) to yield the corresponding 7a‐alkoxyhexahydrofuro[2,3‐b]pyridines 5a‐d, 6a‐d, 7a‐c and 8a‐c . Treatment of 5a‐d, 6a‐d, 7a‐c and 8a‐c with potassium tert‐butoxide produced the corresponding dihydrofuro[2,3‐b]pyridines 9a‐d and 10a‐c . The reaction of 4a‐c with sodium ethoxide (1 equivalent) afforded the corresponding dihydro‐furo[2,3‐b]pyridines 11a‐c .  相似文献   

2.
Sulfonium ylides 1a‐h reacted with sodium iodide to afford the corresponding thiopyrans 2a‐h. On the other hand, compounds 1a‐d were treated with thionyl chloride to give the ring opening products 3a‐d. The reaction of compounds 3a‐d with sodium iodide and triethylamine provided the corresponding thiopyrans 2a‐d.  相似文献   

3.
Cyclopropanes substituted at the same ring carbon by two electron‐withdrawing groups such as alkoxycarbonyl or cyano group react with the primary arylamines via a ring‐opening reaction and ensuing intramolecular cyclization to form substituted pyrrolidines.  相似文献   

4.
4,5‐Dihydro‐1H‐imidazole 3‐oxides bearing different substituents at positions 1 and 2 of the heterocycle were shown to react with a wide range of acceptor‐substituted alkynes forming corrsponding cycloadducts ‐ derivatives of 1,2,3,7a‐tetrahydroimidazo[1,2‐b]isoxazole. High regioselectivity of this process stipulated by conjugation of the nitrogen atom with the nitrone group was revealed.  相似文献   

5.
A facile approach was developed on assembly of the 2‐pyridone nucleus by ferric chloride promoted [3+3] cycloaddition in propionic acid. The tandem process involves cyclization of Michael adduct followed by aromatization. Thus, different substituted 1,2‐dihydro‐2‐oxo‐3‐pyridinecarboxylate and 1,2‐dihydro‐2‐oxo‐3‐pyridinecarboxamide derivatives were prepared in good yields from various enones with malonamic ester and malonamide, respectively  相似文献   

6.
The crystal structure of the title potassium salt, K+·C8HN4O2, of the organic anion 3‐cyano‐4‐(di­cyano­methyl­ene)‐5‐oxo‐4,5‐di­hydro‐1H‐pyrrol‐2‐olate shows that the di­cyano­methyl­ene moiety is able to accept an electron in the same way as does tetra­cyano­ethyl­ene, to yield the novel product. The organic anion is nearly planar, with deviations caused by steric crowding among the exocyclic cyano groups. The K+ cations lie within tricapped trigonal prisms that stack to form channels. The three‐dimensional structure is completed by the formation of hydrogen‐bonded chains by the anions.  相似文献   

7.
2‐Amino‐4,5‐dihydro‐3‐methanesulfonylfurans 7 and 2‐amino‐4,5‐dihydro‐3‐methanesulfonylthiophenes 8 were prepared by deamidation of tetrahydro‐2‐imino‐3‐methanesulfonyl‐3‐furancarboxamides 3 and of tetrahydro‐2‐imino‐3‐methanesulfonyl‐3‐thiophenecarboxamides 4 with bases. Compounds 3 and 4 were obtained by reaction of 2‐amino‐4,5‐dihydro‐3‐furancarboxamides 1 and 2‐amino‐4,5‐dihydro‐3‐thio‐phenecarboxamides 2 with methanesulfonyl chloride in the presence of triethylamine.  相似文献   

8.
The ethyl 1,4‐dihydro‐4‐oxo‐3‐quinolinecarboxylate ring structure, important in several drug compounds, has been prepared in two steps from ethyl 2‐(2‐fluorobenzoyl)acetate. Treatment of this β‐ketoester with N,N‐dimethylformamide dimethyl acetal gives a 97% yield of the 2‐dimethylaminomethylene derivative. Reaction of this β‐enaminone with primary amines in N,N‐dimethylformamide at 140°C for 48 h then affords the 1,4‐dihydro‐4‐oxo‐3‐quinolinecarboxylate esters in 60–74% yields by a tandem addition‐elimination‐SNAr reaction. The synthesis of the starting material as well as procedural details and a mechanistic scenario are presented. J. Heterocyclic Chem., (2011).  相似文献   

9.
Reactions of primary selenoamides with dimethyl acetylenedicarboxylate afforded 2‐aryl‐5‐methoxy‐carbonylmethylene‐4,5‐dihydro‐1,3‐selenazol‐4‐ones in moderate to high yields. Reactions of the primary selenoamides with acetylenedicarboxylic acid gave 2‐aryl‐5‐carboxymethylene‐4‐ethoxy‐4,5‐dihydro‐1,3‐selenazol‐4‐ols in moderate yields.  相似文献   

10.
The unusual formation of 1‐acyl‐1,2‐dihydro‐3H‐pyrazol‐3‐ones starting from 3‐acyloxypyrazoles by Fries‐type rearrangement is described. Under normal conditions, acylation of 2,4‐dihydro‐3H‐pyrazol‐3‐ones 1 and 2 with acid chlorides or anhydrides in the presence of triethylamine gave the corresponding 3‐acyloxypyrazoles 3a‐f and 4a‐f . Treatment of 3a‐c and 4a‐f with Lewis acid, e.g. titanium(IV) chloride and tin(IV) chloride, caused migration of acyl groups to afford the corresponding 1‐acyl‐1,2‐dihydro‐3H‐pyrazol‐3‐ones 5a‐c and 6a‐f . Interestingly, the reactions of 3‐acyloxypyrazoles 3e and 3f with tin(IV) chloride provided the corresponding tin(IV) complexes 8e and 8f .  相似文献   

11.
Each anion of the title salt, NH4+·C8HN4O2·H2O, is linked by two N—H⋯O hydrogen bonds to another anion, thus forming an essentially planar centrosymmetric dimer. The dimers are considered to be mol­ecular building blocks of an anionic wall. The building blocks form infinite ribbons via–C—N⋯N—C– dipole–dipole and π–π inter­actions. Adjacent ribbons are stacked by means of π–π inter­actions, thus forming an anionic wall. Neighbouring walls are connected by (NH4+…H2O)n chains running along the b axis.  相似文献   

12.
The title compound, Na+·C9H7N4O5S·2H2O, presents a Z configuration around the imine C=N bond and an E configuration around the C(O)NH2 group, stabilized by two intra­molecular hydrogen bonds. The packing is governed by ionic inter­actions between the Na+ cation and the surrounding O atoms. The ionic unit, Na+ and 2‐oxo‐3‐semicarbazono‐2,3‐dihydro‐1H‐indole‐5‐sulfonate, forms layers extending in the bc plane. The layers are connected by hydrogen bonds involving the water mol­ecules.  相似文献   

13.
The reactions of 2‐amino‐4,5‐dihydro‐3‐furancarboxarnides 1a,b with cyanomethylene compounds (such as alkyl cyanoacetates and malononitrile) gave the corresponding ring‐opened products 2a‐f. Compounds 2a‐d reacted with methanesulfonic acid to give the corresponding α‐alkylidene‐γ‐butyrolactones 3a‐d. On the other hand, treatment of 2e,f with methanesulfonic acid yielded 3‐pyridinecarbonitrile derivatives 4a,b.  相似文献   

14.
15.
Yellow–orange tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) dihydrate, [Cd(C8HN4O2)2(H2O)4]·2H2O, (I), and yellow tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) 1,4‐dioxane solvate, [Cd(C8HN4O2)2(H2O)4]·C4H8O2, (II), contain centrosymmetric mononuclear Cd2+ coordination complex molecules in different conformations. Dark‐red poly[[decaaquabis(μ2‐3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κ2N:N′)bis(μ2‐3‐cyano‐4‐dicyanomethylene‐1H‐pyrrole‐2,5‐diolato‐κ2N:N′)tricadmium] hemihydrate], [Cd3(C8HN4O2)2(C8N4O2)2(H2O)10]·0.5H2O, (III), has a polymeric two‐dimensional structure, the building block of which includes two cadmium cations (one of them located on an inversion centre), and both singly and doubly charged anions. The cathodoluminescence spectra of the crystals are different and cover the wavelength range from UV to red, with emission peaks at 377 and 620 nm for (III), and at 583 and 580 nm for (I) and (II), respectively.  相似文献   

16.
Some new compounds (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 5a–e were prepared by 1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐ethanone and various aromatic aldehydes. Then one pot reaction was happened by compounds 5a–e with hydrazine hydrate in acetic acid or propionic acid, respectively, to give the title compounds 1acyl‐5‐aryl‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐4,5‐dihydro‐1H‐pyrazoles 6a–i . All structures were established by MS, IR, CHN, 1H‐NMR and 13C‐NMR spectral data. J. Heterocyclic Chem., (2012).  相似文献   

17.
18.
A series of new 4,6‐diaryl‐4,5‐dihydro‐3‐hydroxy‐2H‐indazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k were synthesized by the cyclization of ethyl 2‐oxo‐4,6‐diarylcyclohex‐3‐ene carboxylates 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k . The compounds were characterized by IR, 1H NMR, 13C NMR, 2D NMR, and elemental analysis. The synthesized compounds were evaluated for in vitro antibacterial and antifungal activities against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger, Aspergillus flavus, and Rhizopus sp. Most of the compounds exhibited good activity against the tested organisms. J. Heterocyclic Chem.,, (2012).  相似文献   

19.
20.
3‐Benzylindole‐2‐carbohydrazides (4) on reaction with triethylorthoformate in a polar solvent like DMF yielded only 10‐benzyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) while (4) on reaction with triethylorthoacetate in DMF yielded both 10‐benzyl‐4‐methyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) and 3‐benzyl‐2‐(5‐methyl‐1,3,4‐oxadiazol‐2‐yl)indoles (6) instead of only the triazinoindoles as expected. The oxadiazolylindoles (6) were also synthesized by refluxing (4) with excess of orthoesters. The structures of the compounds formed were characterized by their analytical and spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号