首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automated sequential approach for the generation and reactions of 3‐hydroxymethylindoles in continuous‐flow microreactors is described. Consecutive halogen–magnesium exchanges of four 3‐iodoindoles followed by addition to three aldehydes provided twelve 3‐hydroxymethylindoles in a multi‐microreactor setup. The synthetic flow strategy could be coupled with an in line continuous liquid–liquid extraction workup protocol for each reaction. Further elaboration of each of these indoles within the fluidic setup was achieved by acid‐catalysed nucleophilic substitutions with allyltrimethylsilane and methanol used as nucleophiles. Overall, a set of four 3‐iodoindoles was converted into thirty‐six indole derivatives by a range of transformations including iodo–magnesium exchange/electrophile trapping and acid‐catalysed nucleophilic substitution in a fully automated sequential fashion.  相似文献   

2.
The preparation of several novel 3,5‐substituted‐indole‐2‐carboxamides is described. A 5‐nitro‐indole‐2‐carboxylate was elaborated to the 3‐benzhydryl ester, N‐substituted ester, and carboxylic acid intermedi ates, followed by conversion to the amide and then reduction of the 5‐nitro group to the amine. Indole‐2‐carboxamides with 3‐benzyl and 3‐phenyl substituents were prepared in four steps from either a 3‐bromo indole ester using the Suzuki reaction or from a 3‐keto substituted indole ester. N‐Alkylation of ethyl indole‐2‐carboxylate, followed by amidation and catalytic addition of 9‐hydroxyxanthene gave a 3‐xanthyl‐indole‐2‐carboxamide analog and a spiropyrrolo indole as a side product.  相似文献   

3.
In the title compound, C18H13BrClNO3, the heterocyclic ring of the indole is distorted from planarity towards an envelope conformation. The orientations of the indole, oxetane, chloro and bromo­phenyl substituents are conditioned by the sp3 states of the spiro‐junction and the Cl‐attached C atoms.  相似文献   

4.
A simple and efficient synthesis of novel 2‐heteroaryl‐substituted 1H‐indole‐2‐carboxylates and γ‐carbolines, compounds 1 – 3 , from methyl 2‐(2‐methoxy‐2‐oxoethyl)‐1‐methyl‐1H‐indole‐3‐carboxylate ( 4 ) by the enaminone methodology is presented.  相似文献   

5.
(Z)‐3‐(1H‐Indol‐3‐yl)‐2‐(3‐thienyl)­acrylo­nitrile, C15H10N2S, (I), and (Z)‐3‐[1‐(4‐tert‐butyl­benzyl)‐1H‐indol‐3‐yl]‐2‐(3‐thienyl)­acrylo­nitrile, C26H24N2S, (II), were prepared by base‐catalyzed reactions of the corresponding indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. 1H/13C NMR spectral data and X‐ray crystal structures of compounds (I) and (II) are presented. The olefinic bond connecting the indole and thio­phene moieties has Z geometry in both cases, and the mol­ecules crystallize in space groups P21/c and C2/c for (I) and (II), respectively. Slight thienyl ring‐flip disorder (ca 5.6%) was observed and modeled for (I).  相似文献   

6.
The title compound, C16H12N2S, has been synthesized by base‐catalyzed condensation of 1‐methyl­indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. The product assumes an approx­imately planar Z configuration. The mol­ecule has a thienyl‐ring flip disorder.  相似文献   

7.
Triphenylphosphine (TPP) has been utilized as a novel and efficient catalyst for the Knoevenagel condensation of indole‐3‐carboxaldehydes 1(a–e) , 1‐methyl‐1H‐indole‐3‐carboxaldehydes 4(a–e) , and 1‐ethyl‐1H‐indole‐3‐carboxaldehydes 6(a–e) with the active methylene compound, that is, meldrum's acid ( 2 ), to afford substituted derivatives 5‐((1H‐indol‐3‐yl) methylene)‐2,2‐dimethyl‐1,3‐dioxane‐4,6‐dione 3(a–e) , 2,2‐dimethyl‐5‐((1‐methyl‐1H‐indol‐3‐yl)methylene)‐1,3‐dioxane‐4,6‐dione 5(a–e) , and 2,2‐dimethyl‐5‐((1‐ethyl‐1H‐indol‐3‐yl)methylene)‐1,3‐dioxane‐4,6‐dione 7(a–e) , respectively, in ethanol medium at RT just within 1 h in excellent yields. The products 3(a–e) were reacted independently with alkylating agents, that is, DMS and DES in the presence of PEG‐600 as an efficient and green solvent, to afford the corresponding N‐substituted methyl and ethyl derivatives 5(a–e) and 7(a–e) , respectively. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:41–48, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20750  相似文献   

8.
A new bridgehead nitrogen hetero‐ cycle viz. 11‐carboethoxy‐9‐oxo‐pyrimido[3′2′:3,4]‐1,2,4‐triazino[5,6‐b]indole 3 has been synthesized from 3‐azido‐5H‐1,2,4‐triazino[5,6‐b]indole 2 by its reaction with diethyl fumerate. The intermediate 2 was obtained by treating 3‐hydrazino‐5H‐1,2,4‐triazino[5,6‐b]indole with NaNO2 in presence of polyphosphoric acid. A plausible mechanism for the formation of 3 has been formulated and discussed. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:272–276, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20199  相似文献   

9.
In crystals of the title compound, C23H23N5O3S, the indole system is planar and the phenyl ring of the phenylsulfonyl group makes a dihedral angle with the best plane of the indole system of 77.18 (4)°. The olefinic bond connecting the azabicyclic and indole systems has Z geometry. The geometry adopted by the C=O bond with respect to the N—N bond is trans. The O atom of the carbonyl group of each molecule is hydrogen bonded to the hydrazidic H atom of an adjacent molecule to form an eight‐membered‐ring dimeric structure.  相似文献   

10.
Oxidative cyclization of 5‐ethyl‐3‐(4‐methoxy­benzyl­idene)­hydrazino‐1,2,4‐triazino­[5,6‐b]­indole gave the linearly annel­ated title compound, C19H16N6O. The skeleton is approx­imately planar, except for the ethyl group.  相似文献   

11.
The two title semicarbazones, namely 2,3‐dihydro‐1H‐indole‐2,3‐dione 3‐semicarbazone, C9H8N4O2, (I), and 1‐methyl‐2,3‐dihydro‐1H‐indole‐2,3‐dione 3‐semicarbazone, C10H10N4O2, (II), show the same configuration, viz. Z around the imine C=N bond and E around the C(O)—NH2 bond, stabilized by two intra­molecular hydrogen bonds. The presence of a methyl group on the isatin N atom determines the difference in the packing; in (I), the mol­ecules are linked into chains which lie in the crystallographic (102) plane and run perpendicular to the b axis, while in (II), the mol­ecules are arranged to form helices running parallel to a crystallographic screw axis in the a direction.  相似文献   

12.
The synthesis of new pyrazolo[4,3‐c]β‐carbolines ( 8a,b ) is achieved by condensation of the appropriate aldehyde with 3‐(4‐amino‐1,3‐dimethylpyrazol‐5‐yl)indole ( 4 ) under Pictet‐Spengler reaction conditions. Regioselective cyclization occurred at the usual indole C‐2 position as evidenced from the 1H‐and 13C nmr spectra of 8a,b which lack the pyrrolic H‐2 signal, present in 4 (δ 7.26, 1H, d, Jch‐NH = 2‐5 Hz).  相似文献   

13.
2‐Methyl‐4‐(trifluoromethyl)‐1H‐indole‐5‐carbonitrile is a key intermediate in the synthesis of selective androgen receptor modulators discovered in these laboratories. A practical and convergent synthesis of the title compound starting from 4‐nitro‐3‐(trifluoromethyl)phenol and tert‐butyl acetoacetate was developed, including a telescoped procedure for synthesis (without isolation) and Nenitzescu reaction of 2‐trifluoromethyl‐1,4‐benzoquinone. Conversion of the known Nenitzescu indole product to a novel triflate intermediate followed by palladium‐catalyzed cyanation afforded a penultimate carbonitrile. Removal of the C‐3 tert‐butyl ester group on the indole through a decarboxylative pathway completed the synthesis of the title compound in six steps (27% overall yield) from 4‐nitro‐3‐(trifluoromethyl)phenol (five steps, 37% overall yield from tert‐butyl acetoacetate). J. Heterocyclic Chem., (2011).  相似文献   

14.
The structural characterization of 1H‐pyrrolo­[2,3‐b]­pyridine‐3‐acetic acid (alternative name: 7‐aza­indole‐3‐acetic acid), C9H8N2O2, reveals similar molecular geometry, i.e. with the side chain perpendicular to the 7‐aza­indole ring, to that of the natural plant growth hormone indole‐3‐acetic acid (auxin) and its alkyl­ated and halogenated derivatives.  相似文献   

15.
The synthesis of novel 1‐(1H‐tetrazol‐5‐yl)‐10‐chloro‐1,2,3,4‐tetrahydropyrazino[1,2‐a] indole derivatives starting from the initially prepared 1‐(2‐bromoethyl)‐3‐chloro‐1H‐indole‐2‐carbaldehyde is described. A variety of likely biologically relevant pyrazino[1,2‐a] indole‐based 1,5‐disubstituted tetrazoles was obtained in moderate to high yields via an Ugi‐azide reaction. These reactions presumably proceed by the imine formation, intramolecular cyclization to iminium ion, and nucleophilic addition tandem reactions, respectively.  相似文献   

16.
An efficient method for the synthesis of N‐alkylated 2‐(4‐substituted‐1H‐1,2,3‐triazol‐1‐yl)‐1H‐indole‐3‐carbaldehyde has been developed starting from oxindole and indole using Huisgen's 1,3‐dipolar cycloaddition reaction of organic azides to alkynes. The effect of catalysts and solvent on these reactions has been investigated. Among all these conditions, while using CuSO4·5H2O, DMF was found to be the best system for this reaction. It could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of halides, azides, and alkynes. The Huisgen's 1,3‐dipolar cycloaddition reaction was performed using CuSO4·5H2O in DMF with easy work‐up procedure.  相似文献   

17.
In this personal account, our recent studies of novel synthetic methods of 3,4‐fused tricyclic indole derivatives using 3‐alkylidene indoline derivatives as versatile precursors are discussed. Two types of cascade reactions producing 3,4‐fused tricyclic 3‐alkylidene indolines were developed based on a palladium‐catalyzed intramolecular Heck insertion to an allene‐allylic amination cascade and a platinum‐catalyzed intramolecular Friedel‐Crafts type C?H coupling‐allylic amination cascade. Furthermore, three types of 3,4‐fused tricyclic indoles were accessible from a single 3‐alkylidene indoline precursor via acid‐promoted olefin isomerization or oxidative treatments. The application of the developed methods to the synthesis of natural products bearing a 3,4‐fused tricyclic indole skeleton, (?)‐aurantioclavine, fargesine, and synthetic studies of dragmacidin E are also highlighted.  相似文献   

18.
The intermolecular hydrogen bonds of mono‐ and dihydrated complexes of 7‐(3′‐Pyridyl)indole (7‐3′PI) have been investigated using the time‐dependent density functional theory (TD‐DFT) method. The electrostatic potential analysis of monomer 7‐3′PI and 7‐(3′‐Pyridyl)indole‐water (7‐3′PI‐W) indicates that an intermolecular hydrogen bond between two waters can be formed for 7‐(3′‐Pyridyl)indole‐2water (7‐3′PI‐2W) complex. The calculated bond lengths of the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W in the S1 state (the first excited singlet state) are all shortened compared to the ground state. By the analysis of bond length, charge population and infrared spectra, it is demonstrated that the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W are all strengthened upon electronic excitation to the S1 state. Moreover, the fluorescence of 7‐3′PI‐W and 7‐3′PI‐2W are all red‐shifted to larger wavelength compared to monomer 7‐3′PI. The red‐shift of fluorescence peak of 7‐3′PI‐W and 7‐3′PI‐2W should be attributed to the change of hydrogen bond interaction before and after photoexcitation. Therefore, it can be concluded that the intermolecular hydrogen bonding strengthening in the excited S1 state induces the fluorescence weakening of 7‐3′PI.  相似文献   

19.
The valuable new synthetic intermediates, ethyl 4‐, 6‐ and 7‐formyl‐1H‐indole‐2‐carboxylates ( 10, 11, 12 ) were prepared from 2‐ethoxycarbonyl‐1H‐indole‐4‐, 6‐ and 7‐methanesulfonic acids ( 1, 2, 3 ), respectively. The transformation of sulfomethyl group to formyl function was accomplished through elimination of SO2 to yield ethyl 4‐, 6‐ and 7‐chloromethyl‐1H‐indole‐2‐carboxylates ( 4, 5, 6 ), hydrolysed to ethyl 4‐, 6‐ and 7‐hydroxymethyl‐1H‐indole‐2‐carboxylates ( 7, 8, 9 ), then oxidized to aldehydes ( 10, 11, 12 ). Protection at N1 of indole was not necessary. A marked increase in the rate of hydrolysis of 7‐chloromethyl‐indoles compared to that of 4‐ and 6‐(chloromethyl)indoles was observed.  相似文献   

20.
In the title compound, C24H20Br2N2O4S, the indole ring system is planar and the S atom has a distorted tetrahedral configuration. The sulfonyl‐bound phenyl ring is orthogonal to the indole ring system and the conformation of the phenyl­sulfonyl substituent with respect to the indole moiety is influenced by intramolecular C—H⃛O hydrogen bonds involving the two sulfonyl O atoms. The mean plane through the acetyl­amido group makes a dihedral angle of 57.0 (1)° with the phenyl ring of the benzyl moiety. In the crystal, glide‐related mol­ecules are linked together by N—H⃛O hydrogen bonds and C—H⃛π interactions to form molecular chains, which extend through the crystal. Inversion‐related chains are interlinked by C—H⃛π interactions to form molecular layers parallel to the bc plane. These layers are interconnected through π–π interactions involving the five‐ and six‐membered rings of the indole moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号