首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Alkyl 2‐[2‐ethoxycarbonyl‐2‐(2‐pyridinyl)ethenyl]amino‐3‐dimethylaminopropenoates 3 and 4 were transformed with C‐and N‐nucleophiles into β‐heteroaryl‐α,β‐didehydro‐α‐amino acid derivatives 13 ‐ 16 , substituted 3‐amino‐4H‐quinolizin‐4‐one 17, 2H,5H‐benzo[b]pyran‐2,5‐dione 18 and 19 , 2H,5H‐pyrano[4,3‐b]pyran‐2,5‐dione 20 , 2H,5H‐pyrano[3,2‐c]benzo[b]pyran‐2,5‐dione 21 , 2H‐1‐benzopyran‐2‐one 22 and 24 , pyrido[l,2‐a]pyrimidin‐4‐one 31–34 and 39 derivatives, and N‐heteroaryl‐1H‐imidazole‐4‐carboxylates 37 and 38 .  相似文献   

2.
3‐Carbethoxy‐5‐phenyl‐5H,7H‐thiazolo[3,4‐c]oxazol‐4‐ium‐1‐olate was generated from (2R,4R)‐N‐ethoxyoxalyl‐2‐phenylthiazolidine‐4‐carboxylic acid and its reactivity studied. This münchnone showed low reactivity as dipole although from the reaction with dimethyl acetylenedicarboxylate the corresponding (3R)‐3‐phenyl‐17H,3H‐pyrrolo[1,2‐c]thiazole‐5,6,7‐tricarboxylate could be isolated. The thermolysis of (2R,4R)‐N‐ethoxyoxalyl‐2‐phenylthiazolidine‐4‐carboxylic acid in refluxing acetic anhydride led to the synthesis of N‐(1‐ethoxycarbonyl‐2‐phenylvinyl)‐2‐phenyl‐4‐thioxo‐1,3‐thiazolidine. The structure of methyl (2R,4R)‐N‐ethoxyoxalyl‐2‐phenylthiazoliddine‐4‐carboxylate was determined by X‐ray crystallography.  相似文献   

3.
A new series of 3‐[ω‐[4‐(4‐substituted phenyl)piperazin‐1‐yl]alkyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)‐2,4‐diones ( 3–10 and 12–13 ) were synthesized from the N‐(2‐chloroethyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 1 ) or the N‐(3‐chloropropyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 2 ) and a number of 1‐(4‐substi‐tuted‐phenyl)piperazines. 3‐[2‐[4‐(4‐Aminophenyl)piperazin‐1‐yl]ethyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione ( 14 ) was obtained by reduction of the parent nitro compound 8 . The obtained 5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione derivatives were tested towards cloned α1A, α1B and α1D adrenergic receptors subtypes in binding assays. Some compounds showed good affinity and selectivity for the α1D‐adrenoceptor subtype.  相似文献   

4.
Yellow–orange tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) dihydrate, [Cd(C8HN4O2)2(H2O)4]·2H2O, (I), and yellow tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) 1,4‐dioxane solvate, [Cd(C8HN4O2)2(H2O)4]·C4H8O2, (II), contain centrosymmetric mononuclear Cd2+ coordination complex molecules in different conformations. Dark‐red poly[[decaaquabis(μ2‐3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κ2N:N′)bis(μ2‐3‐cyano‐4‐dicyanomethylene‐1H‐pyrrole‐2,5‐diolato‐κ2N:N′)tricadmium] hemihydrate], [Cd3(C8HN4O2)2(C8N4O2)2(H2O)10]·0.5H2O, (III), has a polymeric two‐dimensional structure, the building block of which includes two cadmium cations (one of them located on an inversion centre), and both singly and doubly charged anions. The cathodoluminescence spectra of the crystals are different and cover the wavelength range from UV to red, with emission peaks at 377 and 620 nm for (III), and at 583 and 580 nm for (I) and (II), respectively.  相似文献   

5.
An efficient two‐step synthesis of novel 3‐(5‐amino‐[1,3,4]thiadiazol‐2‐yl)‐2H‐pyrano[2,3‐c]pyridine‐2‐ones was developed. In the first step, a new 2H‐pyrano[2,3‐c]pyridine‐3‐carboxamide 5 was prepared by Knoevenagel condensation of pyridoxal hydrochloride with cyanoacetamide. In the second step, the reaction of carboxamide 5 with a series of N4‐substituted thiosemicarbazides yielded a library of 35 dis crete compounds 8 {1–35} in high yields. The intermolecular recyclization mechanism leading to these products is discussed.  相似文献   

6.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

7.
The synthesis of 7,8‐dihydro‐5(6H)‐quinolinone ( 3 ) from commercially available 3‐amino‐2‐cyclohexen‐1‐one ( 1 ) and 3‐(dimethylamino)acrolein ( 4 ) in 23% yield avoids the preparation of propynal ( 2 ). Conversion of 5‐(4‐methylphenylsulfonyl)‐6,7,8,9‐tetrahydro‐5H‐pyrido[3,2‐b]azepine ( 12 ) to 6‐(4‐methylphenylsulfonyl)‐1,4,5,6‐tetrahydropyrazolo[3,4‐d]pyrido[3,2‐b]azepine ( 24 ) is described. Removal of the N‐(4‐methylphenylsulfonyl) group with 40% sulfuric acid in acetic acid gave the tricyclic azepine 26. Application of a similar series of reactions to 5‐(4‐nitrobenzoyl)‐6,7,8,9‐tetrahydro‐5H‐pyrido[3,2‐b]‐azepine ( 13 ) afforded 6‐(4‐nitrobenzoyl)‐1,4,5,6‐tetrahydropyrazolo[3,4‐d]pyrido[3,2‐b]azepine ( 25 ).  相似文献   

8.
The cyclization of aryl ketone anilides 3 with diethyl malonate to affords 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c]‐pyridin‐2,5‐diones 4 in good yields. 3‐Acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 are obtained by ring‐opening reaction of 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c]‐pyridin‐2,5‐diones 4 in the presence of 1,2‐diethylene glycol. The reaction of 3‐acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 with hydroxylamine hydrochloride produces 4‐hydroxy‐3‐[N‐hydroxyethanimidoyl]‐1‐phenylpyridin‐2(1H)‐ones 6 from which 3‐alkyloxyiminoacetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 7 are obtained by reacting with alkyl bromides or iodides in the presence of anhydrous potassium carbonate with moderate yields. The similar compounds can be synthesized on refluxing 3‐acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 with substituted hydroxylamine hydrochloride in the presence of sodium bicarbonate with good yields. Most of the synthesized compounds are characterized by IR and NMR spectroscopic methods.  相似文献   

9.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

10.
The reaction of 2‐cyanopyridine with N‐phenylthiosemicarbazide afforded 2‐[amino(pyridin‐2‐yl)methylidene]‐N‐phenylhydrazine‐1‐carbothioamide (Ham4ph) and crystals of 4‐phenyl‐5‐(pyridin‐2‐yl)‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thione (pyph3NS, 1 , C13H10N4S). Crystals of methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetate (phpy2NS, 2 , C16H14N4O2S), derived from 1 , were obtained by the reaction of Ham4ph with chloroacetic acid, followed by the acid‐catalyzed esterification of the carboxylic acid with methyl alcohol. Crystals of bis(methanol‐κO)bis(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)zinc(II)/cadmium(II) hexabromidocadmate(II), [Zn0.76Cd0.24(C16H14N4O2S)2(CH3OH)2][Cd2Br6] or [Zn0.76Cd0.24(phpy2NS)2(MeOH)2][Cd2Br6], 3 , and dichlorido(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)mercury(II), [HgCl2(C16H14N4O2S)] or [Hg(phpy2NS)Cl2], 4 , were synthesized using ligand 2 and CdBr2 or HgCl2, respectively. The molecular and supramolecular structures of the compounds were studied by X‐ray diffractometry. The asymmetric unit of 3 is formed from CdBr3 and M(phpy2NS)(MeOH) units, where the metal centre M has a 76% occupancy of ZnII and 24% of CdII. The M2+ centre of the cation, located on a crystallographic inversion centre, is hexacoordinated and appears as a slightly distorted octahedral [MN4O2]2+ cation. The Cd centre of the anion is coordinated by two terminal bromide ligands and two bridging bromide ligands that generate [Cd2Br6]2? cadmium–bromide clusters. These clusters display crystallographic inversion symmetry forming two edge‐shared tetrahedra and serve as agents that direct the structure in the formation of supramolecular assemblies. In mononuclear complex 4 , the coordination geometry around the Hg2+ ion is distorted tetrahedral and comprises two chloride ligands and two N‐atom donors from the phpy2NS ligand, viz. one pyridine N atom and the other from triazole. In the crystal packing, all four compounds exhibit weak intermolecular interactions, which facilitate the formation of three‐dimensional architectures. Along with the noncovalent interactions, the structural diversity in the complexes can be attributed to the metal centre and to the coordination geometry, as well as to its ionic or neutral character.  相似文献   

11.
The design and synthesis of metal–organic frameworks (MOFs) have attracted much interest due to the intriguing diversity of their architectures and topologies. However, building MOFs with different topological structures from the same ligand is still a challenge. Using 3‐nitro‐4‐(pyridin‐4‐yl)benzoic acid (HL) as a new ligand, three novel MOFs, namely poly[[(N,N‐dimethylformamide‐κO)bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O,O′:N]cadmium(II)] N,N‐dimethylformamide monosolvate methanol monosolvate], {[Cd(C12H7N2O4)2(C3H7NO)]·C3H7NO·CH3OH}n, ( 1 ), poly[[(μ2‐acetato‐κ2O:O′)[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O:O′:N]bis[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ4O,O′:O′:N]dicadmium(II)] N,N‐dimethylacetamide disolvate monohydrate], {[Cd2(C12H7N2O4)3(CH3CO2)]·2C4H9NO·H2O}n, ( 2 ), and catena‐poly[[[diaquanickel(II)]‐bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ2O:N]] N,N‐dimethylacetamide disolvate], {[Ni(C12H7N2O4)2(H2O)2]·2C4H9NO}n, ( 3 ), have been prepared. Single‐crystal structure analysis shows that the CdII atom in MOF ( 1 ) has a distorted pentagonal bipyramidal [CdN2O5] coordination geometry. The [CdN2O5] units as 4‐connected nodes are interconnected by L? ligands to form a fourfold interpenetrating three‐dimensional (3D) framework with a dia topology. In MOF ( 2 ), there are two crystallographically different CdII ions showing a distorted pentagonal bipyramidal [CdNO6] and a distorted octahedral [CdN2O4] coordination geometry, respectively. Two CdII ions are connected by three carboxylate groups to form a binuclear [Cd2(COO)3] cluster. Each binuclear cluster as a 6‐connected node is further linked by acetate groups and L? ligands to produce a non‐interpenetrating 3D framework with a pcu topology. MOF ( 3 ) contains two crystallographically distinct NiII ions on special positions. Each NiII ion adopts an elongated octahedral [NiN2O4] geometry. Each NiII ion as a 4‐connected node is linked by L? ligands to generate a two‐dimensional network with an sql topology, which is further stabilized by two types of intermolecular OW—HW…O hydrogen bonds to form a 3D supramolecular framework. MOFs ( 1 )–( 3 ) were also characterized by powder X‐ray diffraction, IR spectroscopy and thermogravimetic analysis. Furthermore, the solid‐state photoluminescence of HL and MOFs ( 1 ) and ( 2 ) have been investigated. The photoluminescence of MOFs ( 1 ) and ( 2 ) are enhanced and red‐shifted with respect to free HL. The gas adsorption investigation of MOF ( 2 ) indicates a good separation selectivity (71) of CO2/N2 at 273 K (i.e. the amount of CO2 adsorption is 71 times higher than N2 at the same pressure).  相似文献   

12.
A new synthesis of 2‐phenylpyrano[3,2‐b]phenothiazin‐4(6H)‐one derivatives was reported. First 2,10‐diacetyl‐3‐hydroxyphenothiazine ( 2 ) was converted into their benzoyloxy esters ( 3a – 3j ) using different aromatic carboxylic acids in the presence of phosphorous oxychloride in pyridine. Benzoyloxy esters were converted into their 1,3‐diones ( 4a – 4j ) by using dry KOH in pyridine via Baker‐Venkataraman transformation reaction. The 1,3‐diones thus obtained were cyclised to pyranophenothiazines ( 5a – 5j ) by refluxing in an acetic acid/HCl mixture.  相似文献   

13.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

14.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

15.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

16.
A new synthetic route to 6‐substituted‐imidazo[4,5‐c]pyridin‐2‐ons from 4‐aminopyridine has been investigated. 4‐Aminopyridine protected as alkyl carbamates were nitrated with dinitrogen pentoxide to the corresponding methyl, i‐propyl and t‐butyl 3‐nitropyridin‐4‐yl carbamates ( 5a‐c ) in 51‐63 % yields. Attempts to substitute these in the 6‐position by the ONSH and the VNS techniques succeeded with butyl‐amine and the t‐butyl carbamate 9 . From the methyl or t‐butyl 3‐nitropyridin‐4‐yl carbamates 5a, 5c 1,3‐dihydro‐2H‐imidazo[4,5‐c]pyridin‐2‐one ( 1 ) was formed in 73 and 39 % yields, respectively. t‐Butyl 6‐N‐butylamin‐3‐aminopyridin‐4‐yl carbamate ( 6 ) gave 6‐butylamino‐1,3‐dihydro‐2H‐imidazo[4,5‐c]‐pyridin‐2‐one (7) in 53 % yield.  相似文献   

17.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

18.
2‐Thioxo‐5,7‐dimethylpyrido[2,3‐d]pyrimidin‐4(3H)‐ones 3 were synthesized by the cyclocondensation of 2‐amino‐3‐carbethoxy‐4,6‐dimethylpyridine 1 with methyl‐N‐aryldithiocarbamates 2 and compared with the condensation between 1 and aryl isothiocyanates 4. When a comparative study of N vs S alkylation of ambident 2‐thioxo‐5,7‐dimethylpyrido[2,3‐d]pyrimidin‐4(3H)‐ones 3 was carried out under liquid‐liquid and solid‐liquid phase transfer conditions using various alkylating agents 5 , the S‐alkylated products 6 were obtained exclusively and selectively.  相似文献   

19.
The versatile enaminonitrile, 2‐cyano‐3‐(dimethylamino)‐N‐(4‐phenylthiazol‐2‐yl)‐acrylamide ( 2 ), reacts with some C,O‐binucleophiles (acetylacetone and dimedone) in refluxing acetic acid to afford the pyranone 4 , the chromene 6 derivatives, and with C,N‐binucleophiles (2‐(benzothiazol‐2‐yl)acetonitrile and 2‐(1H‐benzimidazol‐2‐yl)acetonitrile) to afford the respective 1H‐pyrido[2,1‐b]benzothiazole 8 and pyrido[1,2‐a]benzimidazole 10 derivatives. Similar treatment of 2 with phenol, resorcinol, α‐naphthol and β‐naphthol in boiling acetic acid gave the coumarin derivatives 12 , 14 , 16 , and 18 , respectively. The utility of enaminonitrile 2 for the synthesis of 6H‐pyrano[3,2‐d]isoxazole 20 , pyrano[2,3‐c]pyrazole 22 , and pyrano[2,3‐d]pyrimidine 24 derivatives was also explored via its reaction with 3‐phenylisoxazol‐5(4H)‐one, 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one, and barbituric acid, respectively. The mechanistic aspects for the formation of the new compounds were also discussed.  相似文献   

20.
In both 2,5‐dimethyl‐6,7‐dihydrobenzo[h]pyrazolo[1,5‐a]quinazoline, C16H15N3, (I), and 2‐tert‐butyl‐5‐methyl‐6,7‐dihydrobenzo[h]pyrazolo[1,5‐a]quinazoline, C19H21N3, (II), which crystallizes with Z′ = 2 in the space group P, the non‐aromatic carbocyclic rings adopt screw‐boat conformations. The molecules of (I) are linked into chains of rings by a combination of C—H...N and C—H...π(arene) hydrogen bonds, while in (II) there are no hydrogen bonds of any kind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号