首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

2.
The title compound, {[Ag(C13H14N2)](C10H6O6S2)0.5·2H2O}n, (I), features a three‐dimensional supramolecular sandwich architecture that consists of two‐dimensional cationic layers composed of polymeric chains of silver(I) ions and 1,3‐bis(4‐pyridyl)propane (bpp) ligands, linked by Ag...Ag and π–π interactions, alternating with anionic layers in which uncoordinated naphthalene‐1,5‐disulfonate (nds2−) anions and solvent water molecules form a hydrogen‐bonded network. The asymmetric unit consists of one AgI cation linearly coordinated by N atoms from two bpp ligands, one bpp ligand, one half of an nds2− anion lying on a centre of inversion and two solvent water molecules. The two‐dimensional {[Ag(bpp)]+}n cationic and {[(nds)·2H2O]2−}n anionic layers are assembled into a three‐dimensional supramolecular framework through long secondary coordination Ag...O interactions between the sulfonate O atoms and AgI centres and through nonclassical C—H...O hydrogen bonds.  相似文献   

3.
The complexes [Ag12(Spz)12(N‐triphos)2][Ag3(Spz)3(N‐triphos)]2 · (DMF)6 ( 1 ) and [Ag18(Spz)12(N‐triphos)4(CF3CO2)6] ( 2 ) were synthesized and structurally characterized by X‐ray diffraction [HSpz = pyrazine‐2‐thiolate, N‐triphos = tris((diphenylphosphanyl)methyl)amine]. The central [Ag6] ring with chair‐conformation in 1 and the ideally octahedral [Ag6] cluster core in 2 are both stabilized by the tripodal building units of neutral [Ag3(Spz)3(N‐triphos)] compound. The Ag ··· Ag distances of the [Ag6] moieties in 1 and 2 are 3.07 and 2.81 Å, respectively, exhibiting intermetallic interactions, which can enhance the stability of [Ag6] conformations. In addition, the π ··· π interactions between parallel pyrazine rings could impose on the building and the Ag ··· Ag interactions of these Ag–S clusters.  相似文献   

4.
The reaction of Zn(NO3)2‐6H2O, NH4SCN and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in CH3OH afforded the complex [Zn(NCS)2(bpp)]n, 1 , while the reaction of Zn(ClO4)2‐6H2O and bpp in CH3OH afforded the complex [Zn(ClO4)2(bpp)2]n, 2 . Both complexes have been characterized by spectroscopic methods and their structures have been determined by X‐ray crystallography. Crystal data for 1 : Orthorhombic, space group P21212, a= 12.857(6), b = 14.822(7), c = 4.820(2) Å, β = 90°, V = 918.5(8) Å3, Z = 2 with final residuals R1 = 0.0747 and wR2 = 0.1657. Crystal data for 2 : Tetragonal, space group I4/mcm, a = 11.612(1), b = 11.612(1), c = 23.247(9) Å, β = 90°, V = 3135(1) Å3, Z = 4 with final residuals R1 = 0.0523 and wR2 = 0.1064. The coordination polymers display a variety of structural architectures, ranging from zigzag chains ( 1 ) and one‐dimensional channel‐type architectures ( 2 ). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

5.
Four new bridged silver(I) complexes, namely [Ag22‐teda)(μ2‐fbc)2] ( 1 ), [Ag22‐1,6‐dah)2](bpdc) · 4H2O ( 2 ), [Ag22‐2‐ap)(2‐ap)(bnb)] · 0.34H2O ( 3 ), [Ag22‐pyc)2(2‐apy)2] · 0.5H2O ( 4 ), have been synthesized and characterized by elemental analysis and crystallographic methods [fbc = 4‐fluorobenzoate, teda = triethylenediamine ( 1 ); bpdc = biphenyl‐4,4′‐dicarboxylate, 1,6‐dah = 1,6‐diaminohexane ( 2 ); bnb = 3,5‐binitrobenzoate, 2‐ap = 2‐aminopyrimidine ( 3 ); pyc = 3‐pyridinecarboxylate acid, 2‐apy = 2‐aminopyridine ( 4 )]. Complex 1 contains a 1D linear chain paralleling to the c‐axis, whereas in complex 2 silver(I) atoms were bridged by the 1,6‐dah ligand into a zigzag chain, further giving a 1D ribbon by weak Ag ··· Ag interactions. Complex 3 consists of a dinuclear silver(I) [Ag22‐2‐ap)(2‐ap)(bnb)] moiety and a lattice water molecule, forming a 3D network via a number of hydrogen‐bonding interactions such as N–H ··· O, N–H ··· N and C–H ··· O hydrogen bond and other weak interactions such Ag ··· Ag, Ag ··· N, N ··· O as well as O ··· O interaction. Similar to 3 , the asymmetric unit of 4 consists of one dinuclear silver(I) [Ag22‐pyc)2(2‐apy)2] moiety and half lattice water molecule, further generating a tetranuclear silver(I) {[Ag22‐pyc)2(2‐apy)2]2 · H2O} moiety. These moieties construct a 3D supramolecular network structure of 4 through N–H ··· O, O–H ··· O and C–H ··· O hydrogen bonds as well as other weak interactions such as Ag ··· O and N ··· O interactions.  相似文献   

6.
Two new hybrid inorganic‐organic compounds with different chain/layer structures, [Ag(bipy)]n · n(Hdpa) · n(DMF) · n(H2O) ( 1 ) and [Ag(dpa)0.5(bix)0.5]n ( 2 ) [H2dpa = diphenic acid, bipy = 4, 4′‐bipyridine, bix = 4, 4′‐bis(imidazol‐1‐ylmethyl)benzene, DMF = N,N′‐dimethylformamide] were successfully synthesized and characterized by elemental analysis, IR spectroscopy, and powder X‐ray diffraction. Single X‐ray analysis reveals that compound 1 is a one‐dimensional (1D) supramolecular double chain structure constructed by the combination of coordination bonds, hydrogen bonds, weak Ag ··· O and argentophilic interactions, compound 2 is a two‐dimensional (2D) undulated layer structure constructed by coordination bonds, weak Ag ··· O and argentophilic interactions. Moreover, the photoluminescent properties of the two compounds were also investigated in the solid state at room temperature.  相似文献   

7.
The reaction of AgNO3 with combinations of 1,3-bis(4-pyridyl)propane (bpp), pyridine-3,5-dicarboxylic acid (H2pdc), oxybis(benzoic acid) (H2oba), and 4,4′-oxidiphthalic acid (H4odpt) in aqueous alcohol/ammonia at room temperature produces crystals of [Ag2(bpp)2](pdc)·8H2O, [Ag2(bpp)2(H2O)](oba)·5H2O, and [Ag2(bpp)2(H2O)2](odpt)·2H2O. All three complexes consist of 1D infinite silver-bpp cationic chains, interspersed with organic carboxylate anions that provide charge compensation in the crystal structures. The lattice water molecules are situated among the framework of the crystal structure and show rich hydrogen-bonding interactions, which serve to orientate the organic carboxylate anions in the crystal packing, while the presence of Ag···N and Ag···Ag contacts strengthens the frameworks. The luminescent properties of the complexes have been investigated.  相似文献   

8.
The reaction of AgNO3 with combinations of 4,4′-bipyridine (bpy), 1,2-di(4-pyridyl)ethane (dpe), 1,3-bis(4-pyridyl)propane (bpp), succinic acid (H2su), terephthalic acid (H2tp), 2,2′-diphenylaminedicarboxylic acid (H2dpadc), and naphthaleneacetic acid (Hnaa) in aqueous alcohol at room temperature produces block-like crystals of [Ag3(bpy)3](su)·10H2O, [Ag2(bpy)2](tp)·6H2O, [Ag2(dpe)2(H2O)2](dpadc)·H2O, [Ag6(dpe)6(H2O)4](tp)3·12H2O, [Ag(bpp)](naa), and [Ag2(bpp)2](dpadc)·6H2O. All six compounds consist of 1D infinite silver-bpy/dpe/bpp cationic chains, interspersed with organic carboxylate anions that provide charge compensation in the crystal structures. The lattice water molecules are situated among the framework of the crystal structure and show rich hydrogen-bonding interactions {except for [Ag(bpp)](naa)}, which help to orientate of the organic carboxylate anions in the crystal packing.  相似文献   

9.
The three‐dimensional coordination polymer poly[[bis(μ3‐2‐aminoacetato)di‐μ‐aqua‐μ3‐(naphthalene‐1,5‐disulfonato)‐hexasilver(I)] dihydrate], {[Ag6(C10H6O6S2)(C2H4NO2)4(H2O)2]·2H2O}n, based on mixed naphthalene‐1,5‐disulfonate (L1) and 2‐aminoacetate (L2) ligands, contains two AgI centres (Ag1 and Ag4) in general positions, and another two (Ag2 and Ag3) on inversion centres. Ag1 is five‐coordinated by three O atoms from one L1 anion, one L2 anion and one water molecule, one N atom from one L2 anion and one AgI cation in a distorted trigonal–bipyramidal coordination geometry. Ag2 is surrounded by four O atoms from two L2 anions and two water molecules, and two AgI cations in a slightly octahedral coordination geometry. Ag3 is four‐coordinated by two O atoms from two L2 anions and two AgI cations in a slightly distorted square geometry, while Ag4 is also four‐coordinated by two O atoms from one L1 and one L2 ligand, one N atom from another L2 anion, and one AgI cation, exhibiting a distorted tetrahedral coordination geometry. In the crystal structure, there are two one‐dimensional chains nearly perpendicular to one another (interchain angle = 87.0°). The chains are connected by water molecules to give a two‐dimensional layer, and the layers are further bridged by L1 anions to generate a novel three‐dimensional framework. Moreover, hydrogen‐bonding interactions consolidate the network.  相似文献   

10.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

11.
The reaction of Zn(NO3)2·6H2O and bpp (bpp = 1,3‐Bis(4‐pyridyl)pronpane) in CH3OH afforded the complex [Zn(bpp)(NO3)2]n, 1 . The IR has been recorded and the structure has been determined. Crystal data for 1: Space group P2(1)/n, a = 11.749(1), b = 11.413(1), c = 11.942(1) Å, β = 96.06(6)°. V = 1592.5(3) Å3, Z = 4 with final residuals R1 = 0.0484 and wR2 = 0.0984. The complexes show supramolecular structure in the solid state by intermolecular hydrogen bonding interaction.  相似文献   

12.
Two coordination polymers, [Cd(Heidc)(bpp)]n ( 1 ) and [Zn3 (eidc)2(bpp)(H2O)2] · 2H2O}n ( 2 ) (H3eidc = 2‐ethyl‐4,5‐imidazole dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane) were hydrothermally synthesized and characterized by elemental analysis, IR, spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 features a 2D layer formed by C–H ··· π stacking interactions between adjacent chains, whereas compound 2 shows a 3D (83)2(85.10)‐tfc framework constructed of the 2D (6,3) layer. The result demonstrates that the central metal atoms play a key role in governing the coordination motifs. Moreover, solid‐state properties such as thermal stabilities and photoluminescence of 1 and 2 were also investigated.  相似文献   

13.
The reaction of AgNO3 and sulfobenzoate with neutral ligands led to the formation of three complexes, {[Ag2(4‐sb)(Ph3P)2(3‐apy)] · (H2O)}n ( 1 ), {[Ag(PPh3)(2‐apy)] · [Ag(PPh3)(3‐sb)] · (H2O)}n ( 2 ) and [Ag(PPh3)(Hdpa)(4‐Hsb)] ( 3 ) (4‐H2sb = 4‐sulfobenzoic acid, PPh3 = triphenylphosphine, 3‐apy = 3‐aminopyridine, 2‐apy = 2‐aminopyridine, 3‐H2sb = 3‐sulfobenzoic acid, Hdpa = 2,2′‐dipyridylamine) Complex 1 is a 2D sandwich‐like polymer. Complex 2 is a cation‐anion species and has a 1D polymer structure. Complex 3 is a monomer. Complexes 1 – 3 contain the Ag‐PPh3 unit and such unit largely hinders the Ag–Ag, π ··· π, Ag ··· π, and Ag ··· C interactions. The experimental results indicated that these three complexes have weaker conductivities than those corresponding silver complexes having abundant weak interactions, especially π ··· π and Ag–Ag interactions, illustrating that the cation‐anion species having potential ability of charge transfer can largely promote the conductivity property.  相似文献   

14.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

15.
Two new compounds, [Ag(Hppdb)]n ( 1 ) and {[Ag2(Hppdb)2(bpe)] · 5.5H2O}n( 2 ) [H2ppdb = [2,3‐f]pyrazino[1,10]phenanthroline‐2,3‐dicarboxylic acid, bpe = trans‐1,2‐bis(4‐pyridyl)ethylene], were synthesized and characterized. In 1 , Hppdb ions link AgI cations to form an infinite 1D [–Ag–(Hppdb)–Ag–]n chain, furthermore, the dimensionality is extended to 2D layers through synergistic π–π stacking, hydrogen‐bonding and weak Ag ··· O interactions. Correspondingly, the dimeric [(Ag)(Hppdb)]2 subunits in 2 are connected by bpe ligands to generate a loop‐link‐shaped 1D chain motif, which is further joined through a R22(18)C–H ··· O hydrogen‐bonding ring to afford interesting diagonal/diagonal inclined catenation 2D + 2D → 3D supramolecular architectures. In addition, solid‐state properties such as photoluminescence and thermal stability of the two compounds were studied.  相似文献   

16.
Deep blue‐violet colored powder samples of Ag2ZnZr2F14 were synthesized by heating Zn(NO3)2·4H2O, Ag and ZrOCl2·8H2O at 300 °C under fluorine atmosphere. The crystal structure of Ag2ZnZr2F14 was refined from X‐ray powder diffraction data using the Rietveld method (C2/m, a = 9.0206(1) Å, b = 6.6373(1) Å, c = 9.0563(1) Å, β = 90.44(1)°, Z = 2). The structure is derived from the isotypic Ag3Zr2F14 by replacing only one of the two crystallographically different Ag2+ ions with Zn2+ ions, thus leading to discrete Ag2F7 dimers. These dimers are connected via nearly linear Ag–F···F–Ag bridges with short F···F distances of 2.33 Å to form two‐legged ladders. Magnetic susceptibility measurements and density functional calculations show that the two Ag2+ ions in each Ag2F7 dimer are strongly coupled antiferromagnetically.  相似文献   

17.
Three silver(I) coordination polymers namely, [Ag4(L1)2(1, 4‐ndc)2]n ( 1 ) {[Ag(L2)] · (1, 4‐Hndc) · H2O}n ( 2 ), and {[Ag(L3)(H2O)] · (1, 4‐Hndc)}n ( 3 ) [L1 = 1, 3‐bis(benzimidazol‐1‐ylmethyl)benzene, 1, 4‐H2ndc = 1, 4‐naphthalenedicarboxylic acid, L2 = 1, 3‐bis(5, 6‐dimethylbenzimidazole‐1‐ylmethyl)benzene, L3 = 1, 4‐bis(5, 6‐dimethylbenzimidazole)butane], were hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR spectroscopy, thermogravimetric and XRPD analysis. Complex 1 displays a 1D tube‐like chain, which is packed into a 3D supramolecular network by π–π stacking interactions. Complex 2 features an infinite 1D linear chain. Complex 3 contains a 1D wave‐like chain, which is extended into a 3D supramolecular network through O–H ··· O hydrogen bonding interactions. Moreover, these coordination polymers exhibit catalytic properties for degradation of methyl orange in Fenton‐like processes.  相似文献   

18.
水热合成了基于吡啶-3,5-二羧酸(H2pydc)的含Ag(I)配位聚合物 [Ag2(bpp)2(H2O)]·pydc·7H2O (1) (其中bpp = 1,3-双(4-吡啶)丙烷)。X射线单晶结构分析表明,在一维化合物1中,发现了包含(H2O)12水簇单元的二维氢键层状结构。有趣的是,在该二维层中, 每个pydc2-阴离子作为“桥”连接了两个(H2O)12单元和两个自由水分子。另外,对化合物1的荧光、热重、粉末衍射等也进行了研究和讨论。  相似文献   

19.
The reaction of Co(NO3)2·6H2O with two equivalents of PPz (PPz = piperazine hexahydrate) and two equivalents of NH4SCN in CH3OH afforded the complex [Co(NCS)2(PPz)2(CH3OH)2]. The reaction of Ni(NO3)2·6H2O with two equivalents of PPz and four equivalents of NH4SCN in CH3OH afforded the complex [Ni(NCS)4(PPz)2]. Their IR spectra have been recorded and the structures have been determined. Crystal data for 1 : space group P&1bar;, a = 6.7208(6) Å, b = 8.4310(8) Å, c = 8.5923(8) Å, a = 77.881(2)°, β = 76.342(2)°, γ = 83.936(2)°, V = 461.75(1) Å3, Z = 1 with final residuals R1 = 0.0650 and wR2 = 0.1725. Crystal data for 2 : space group P2(1)/n, a = 7.4209(6) Å, b = 11.0231(9) Å, c = 12.317(1) Å, β = 96.642(9)°, V = 1000.9(2) Å3, Z = 2 with final residuals R1 = 0.0378 and wR2 = 0.0809. Important NCS—H‐N and O‐H—N(PPz) hydrogen‐bonding interactions in compound 1 and NCS···H‐N hydrogen‐bonding interactions and NCS—SCN interactions in compound 2 play a significant role in aligning the polymer strands in crystalline solids.  相似文献   

20.
A one‐dimensional copper(II) complex {[Cu(sac)2(μ‐pyz)(H2O)]·H2O}n ( 1 ) (pyz = pyrazine, and sac = saccharinate) has been synthesized and characterized by elemental analysis, IR spectroscopy, thermal and single crystal X‐ray analyses. Complex 1 crystallizes in the triclinic space group . The [Cu(sac)2(H2O)] units are bridged by pyz leading to a one‐dimensional alternating chain in which the copper(II) ions exhibit a distorted square–pyramidal coordination of CuN4O. The intradimer Cu···Cu distance is 6.881Å, while interdimer Cu···Cu distance is 7.066Å. The supramolecular interactions are mainly controlled by the sac anion and water molecules. The individual chains are linked by strong OW–H···O(sac) hydrogen bonds into a two‐dimensional layers, which are further arranged in a three‐dimensional supramolecular network by aromatic π(sac)···π(sac) stacking interactions and CH···π(pyz) interactions. Thermal analysis of complex 1 shows that the decompositions of the aqua, pyz and sac ligands are observed as distinct steps on the DTA and TG curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号