首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A simple, efficient and eco‐friendly procedure has been developed using ZrOCl2·8H2O as catalyst for the synthesis of novel [1,3]oxazino[5,6‐c]quinolin‐5‐one derivatives in aqueous ethanol at room temperature. The present methodology offers several advantages such as operational simplicity, use of ZrOCl2·8H2O as a green, non‐toxic, inexpensive and reusable catalyst, reusability of reaction media, high yields, mild and environmentally benign reaction conditions.  相似文献   

2.
The novel supramolecular assembly of composition [{(bz3tren)H4}4+ · (ReO4) · 3(Cl)] resulted from the self‐organization of a mixture of tris[2‐(benzylamino)ethyl]amine (bz3tren), HCl and NH4ReO4 at a molar ratio of 1:4.7:1 in methanol. The crystal architecture is characterized by stacks of repeating sandwich‐type building blocks that contain charge‐assisted N—H···O(Re) hydrogen bonds [N···O 2.81‐2.86Å] and weaker C—H···O(Re) interactions [C···O 3.11Å]. The stacks are further linked by N—H···Cl [N···Cl 3.03Å] and weaker C—H···Cl [C···Cl 3.47‐3.74Å] interactions into two‐dimensional layers bordered by the benzyl groups of the [(bz3tren)H4]4+ cations. Edge‐to‐face C—H···π interactions involving the aromatic rings occur within and between the layers. The protonation constants of bz3tren in methanol were determined by potentiometric titration. The corresponding structures of the ligand in its different protonation states were calculated at the DFT‐level.  相似文献   

3.
The syntheses of copper(II) complexes with neutral macrocyclic ligands 1,4,7,10,12,- 15,17,20,23,26,27,30-dodecaazadispiro[10·4·10·4]triacontane (DDST), 2,5,7,10,13,15,18,21,-23,26,29,32-dodecaazatricyclo[20·10·0·06,17]dotriacontane (DOCD) and 2,5,7,10,13,16,18,-21,23,26,29,32-dodecaaza-1,6,17,22-tetrachlorotricyclo[20·10·0·06,17]dotriacontane (DTTD) derived from triethylenetetramine, 1,2-diaminoethane and chlorocarbons (carbon tetrachloride, 1,l,2,2-tetrachloroethane and hexachloroethane, respectively) have been studied. Complexes [Cu3(DDST)]Cl6, [Cu3(DOCD)]Cl6 and [Cu3(DTTD)]Cl6?·?H2O and the copper ion-free ligand hydrochlorides DDST?·?12HCl and DOCD?·?12HCl are supported by elemental analyses, conductivity measurements and spectroscopic studies. Potentiometric equilibrium studies on DDST and DOCD hydrochlorides and their copper complexes also support the structures.  相似文献   

4.
Crystal Structures of TMEDA Adducts and of Salts with Protonated TMEDA Molecules The reaction of TMEDA with two equivalents of [BH3(SMe2)] in toluene at 20 °C gives the adduct [TMEDA(BH3)2] ( 1 ). A similar reaction of pyrrolidine with [BH3(SMe2)] in a molar ratio of 1:1 leads to the adduct [pyrrolidine(BH3)] ( 2 ). TMEDA can be introduced into the coordination sphere of In3+ by the treatment of InI3 with TMEDA in toluene to give the complex [InI(TMEDA)] ( 3 ). The salt [HTMEDA]I ( 4 ), containing a mono‐protonated TMEDA molecule, is the result of the reprotonation of [NH4]I and TMEDA in toluene at 20 °C. The salts [H2TMEDA]—[InCl4(TMEDA)]2 ( 5 ) and [H2TMEDA][InCl5(THF)] ( 6 ) are formed in the reaction mixtures TMEDA/toluene/InCl3/HCl and TMEDA/toluene/THF/InCl3/HCl, respectively, whereupon 6 was characterized more closely. Crystals of [In5I6(OH)(TMEDA)4]I·2, 5toluene ( 7 ·2.5toluene) can be obtained after treatment of InI3 with non‐dried TMEDA; 4 was identifed as by‐product. 1 — 7 ·2.5toluene were partially investigated by NMR methods and vibrational spectroscopy. In all cases a characterization by single crystal X‐ray diffraction was performed. According to this, all nitrogen atoms in 1 and 2 are coordinated by BH3 groups leading to a distorted tetrahedral environment at the nitrogen and the boron atoms. In 3 a distorted trigonal‐bipyramidal coordination sphere at the In3+ is present. The apical positions are occupied by I3 and N3. Strong N‐H···N bridges, running along [001] is the feature in 4 ; the I—‐Ions are not involved into the system of H‐bridges. A ion triple, [H2TMEDA][InCl4(TMEDA)]2, hold together by bifurcated H‐bridges is the dominating structural motif in 5 , whereas alternation bifurcated and linear H‐bridges, leading zu a zig‐zag chain along [100], is the build‐up principle of 6 . In 7 ·2.5toluene a complex In5O8 skeleton was formed, consisting of a virtual corner‐connected doubled heterocubane. At every heterocubane a corner, occupied by a metal ion, is missing. The coordination spheres of the In atoms of the complex cation are completed by TMEDA molecules and iodide ions.  相似文献   

5.
Ivabradine hydrochloride (IVA‐HCl) (systematic name: {[3,4‐dimethoxybicyclo[4.2.0]octa‐1(6),2,4‐trien‐7‐yl]methyl}[3‐(7,8‐dimethoxy‐2‐oxo‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepin‐3‐yl)propyl]methylazanium), is a novel medication used for the symptomatic management of stable angina pectoris. In many recent patents, it has been claimed to exist in a very large number of polymorphic, hydrated and solvated phases, although no detailed analysis of the structural features of these forms has been published to date. Here, we have successfully crystallized the tetrahydrate form of IVA‐HCl (form β), C27H37N2O5+·Cl?·4H2O, and elucidated its structure for the first time. Simultaneously, a new crystal form of IVA‐HCl, i.e. the hemihydrate (form II), C27H37N2O5+·Cl?·0.5H2O, was discovered. Its crystal structure was also accurately determined and compared to that of the tetrahydrate form. While the tetrahydrate form of IVA‐HCl crystallized in the orthorhombic space group P212121, the new form (hemihydrate) was solved in the monoclinic space group P21. Detailed conformational and packing comparisons between the two forms have allowed us to understand the role of water in the crystal assembly of this hydrochloride salt. The stabilities of the two forms were compared theoretically by calculating the binding energy of the water in the crystal lattice using differential scanning calorimetry (DSC). The stability experiments show that the tetrahydrate is stable under high‐humidity conditions, while the hemihydrate is stable under high‐temperature conditions.  相似文献   

6.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐hexamethyleneiminylthiosemicarbazide and produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim ( 1 ). Complexes with zinc(II ), cadmium(II ) and mercury(II ) have been prepared and characterized by spectroscopic techniques. In addition, the crystal structures of HAmhexim ( 1 ), [Zn(Amhexim)(OAc)]2μ·μDMSO ( 2 ), [Cd(HAmhexim)Cl2]μ·μDMSO ( 7 ), [Cd(Amhexim)2] ( 8 ), [Cd(HAmhexim)Br2]μ·μDMSO ( 9 ), [Cd(HAmhexim)I2]μ·μEtOH ( 10 ), [Hg(HAmhexim)Cl2]μ·μDMSO ( 11 ), [Hg(Amhexim)Br]2 ( 13 ), [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O ( 14 ) and [Hg(Amhexim)I]2 ( 15 ) have been determined. Coordination of the anionic and neutral thiosemicarbazone ligand occurs through the pyridine nitrogen atom, imine nitrogen atom, and thiolato or thione sulfur atom. In [Zn(Amhexim)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. [Cd(Amhexim)2] is a 6‐coordinate species while the other cadmium complexes are 5‐coordinate. In [Hg(Amhexim)Br]2 and [Hg(Amhexim)I]2 the thiolato sulfur atoms act as bridges between the Hg atoms to form dimeric compounds and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O is a trinuclear complex with three different centers — two metallic centers have a 5‐coordination and the another one has 4‐coordination. In addition, [Hg(HAmhexim)Cl2]μ·μDMSO and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O shown a supramolecular one‐dimensional hydrogen‐bonded self‐assembling.  相似文献   

7.
A mercury(II) chloride adduct of ferron (7-iodo-8-hydroxyquinoline-5-sulfonic acid), [HgCl2 (C9H6INO4)·H2O] has been synthesized and characterized by X-ray diffraction analysis and spectroscopic studies. The compound crystallizes in P21/c space group, a?=?8.919(3), b?=?23.216(3), c?=?7.714(3)?Å, β?=?95.79(3)°. The coordination geometry around mercury is distorted square planar [(2+2) coordination] with two short Hg–Cl bonds [2.308(2) and 2.309(18)?Å] and two long Hg–O(sulfonate) [2.738(4)?Å] and Hg–O(water) [2.889(4)?Å] bonds. The sulfonic group is deprotonated, the proton having migrated to the quinoline N atom that forms intermolecular hydrogen bonds. The inversion related organic ligands are stacked over one another. The crystal structure is further stabilized by a C–H···O, O–H···O and N–H···O hydrogen bonds.  相似文献   

8.
The name `bath salts', for an emerging class of synthetic cathinones, is derived from an attempt to evade prosecution and law enforcement. These are truly illicit drugs that have psychoactive CNS (central nervous system) stimulant effects and they have seen a rise in abuse as recreational drugs in the last few years since first having been seen in Japan in 2006. The ease of synthesis and modification of specific functional groups of the parent cathinone make these drugs particularly difficult to regulate. MDPV (3,4‐methylenedioxypyrovalerone) is commonly encountered as its hydrochloride salt (C16H21NO3·HCl), in either the hydrated or the anhydrous forms. This `bath salt' has various names in the US, e.g. `Super Coke', `Cloud Nine', and `Ivory Wave', to name just a few. We report here the structures of two forms of the HCl salt, one as a mixed bromide/chloride salt, C16H22NO3+·0.343Br·0.657Cl [systematic name: 1‐(benzo[d][1,3]dioxol‐5‐yl)‐2‐(pyrrolidin‐1‐ium‐1‐yl)pentan‐1‐one bromide/chloride (0.343/0.657)], and the other with the H7O3+ cation, as well as the HCl counter‐ion [systematic name: hydroxonium 1‐(benzo[d][1,3]dioxol‐5‐yl)‐2‐(pyrrolidin‐1‐ium‐1‐yl)pentan‐1‐one dichloride, H7O3+·C16H22NO3+·2Cl]. This is one of a very few structures (11 to be exact) in which we have a new example of a precisely determined hydroxonium cation. During the course of researching the clandestine manufacture of MDPV, we were surprised by the fact that a common precursor of this illicit stimulant is known to be the fragrant species piperonal, which is present in the fragrances of orchids, most particularly in the case of the vanilla orchid. We found that MDPV can be made by a Grignard reaction of this heliotropin. This may also explain the unexpected appearance of the bromide counter‐ion in some of the salts we encountered (C16H21NO3·HBr), one of which is presented here [systematic name: 1‐(benzo[d][1,3]dioxol‐5‐yl)‐2‐(pyrrolidin‐1‐ium‐1‐yl)pentan‐1‐one bromide, C16H22NO3+·Br]. Complexation of MDPV with a forensic crystallizing reagent, HAuCl4, yields the tetrachloridoaurate salt of this drug, (C16H22NO3)[AuCl4]. The heavy‐metal complexing agent HAuCl4 has been used for over a century to identify common quarternary nitrogen‐containing drugs via microscopic identification. Another street drug, called ethylone (3,4‐methylenedioxyethylcathinone), is regularly sold and abused as its hydrochloride salt (C12H15NO3·HCl), and its structure is herein described (systematic name: N‐{1‐[(benzo[d][1,3]dioxol‐5‐yl)carbonyl]ethyl}ethanaminium chloride, C12H16NO3+·Cl). Marketed and sold as a `bath salt', `plant feeder', or `cleaning product', this drug is nothing more than a slight chemical modification of the banned drug methylone (3,4‐methylenedioxymethcathinone). As with previously popular synthetic cathinones, the abuse of ethylone has seen a recent increase due to regulatory efforts on previous generations of cathinones that are now banned.  相似文献   

9.
The non‐ionic europium(III) complex [Eu(TTA)3·DAF]·0.5C7H8 (TTA = 2‐thenoytrifluoroacetonate, DAF = 4, 5‐diazafluoren‐9‐one) was synthesized. The structural determination has been carried out. DAF coordination induces the both excitation spectra in the solid state and solution having a red shift and sensitizes Eu3+ luminescence under visible light excitation.  相似文献   

10.
Two new 4d‐4f coordination polymers, [Ag2Nd(nic)4(H2O)4·(ClO4)·H2O] ( 1 ) and [Ag8Yb4(inic)8(ox)6]· [Ag2(inic)2] ( 2 ) [nic = nicotinate, inic = isonicotinate and ox = oxalate] have been synthesized and characterized by element analysis, IR spectroscopy and thermal analysis, as well as single crystal X‐ray diffraction. Complex 1 exhibits a wavelike layer that is assembled from neodymium‐carboxylate subunits, silver centres and perchlorate ions. Complex 2 represents a extended heterometallic sandwich‐like layered network that is constructed from ytterbium‐oxalate layers and Ag(inic) chains.  相似文献   

11.
New [Co(Mfn-HCl)2(NO3)2] · 6H2O complex has been synthesized and characterized using microanalytical, molar conductance, spectroscopic (IR and UV-Vis), effective magnetic moment, and thermal analyses. The infrared spectroscopic results data received from the comparison between free Mfn · HCl ligand and its cobalt(II) complex proved that Metformin forms complex with cobalt(II) ions as a bidentate ligand through its two imino groups. The antioxidant activity of the Mfn · HCl and Co(II)-2Mfn · HCl complex were evaluated by using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging method. Antitumor activity for Mfn · HCl ligand and its cobalt(II) complex was determined using Ehrlich Ascites carcinoma cell (EACC) line. It has been shown that the Co(II)-Mfn · HCl complex is much more effective as free radical scavenger and has higher antitumor activity than the free Mfn · HCl ligand.  相似文献   

12.
The oligoalumosiloxanes {[Ph2SiO]8[Al(O)OH]4·2,5Et2O·HOtBu} ( 6 ) and {[Ph2SiO]8[Al(O)OH]4·2Et2O·2HOiPr} ( 7 ) have been obtained from the reaction of diphenylsilanediol with aluminium‐tritert‐butoxide and aluminium‐triiso‐propoxide in ethyl ether with reasonable yields. In a 1:1 molar mixture of toluene and the respective alcohol (iso‐propanol or tert‐butanol), the ethyl ether molecules in {[Ph2SiO]8[Al(O)OH]4·4Et2O}, in 6 or 7 can be completely displaced forming the compounds [Ph2SiO]8[Al(O)OH]4·4HOiPr ( 8 ) and [Ph2SiO]8[Al(O)OH]4·nHOtBu ( 9 ). Whereas 6 , 7 and 8 are crystalline, 9 is obtained as a viscous liquid. An X‐ray structure determination on {[Ph2SiO]8[Al(O)OH]4·3Et2O·HOtBu} reveals different bonding modes of the diethyl ether molecules to the oligoalumosiloxane compared to the tert‐butanol, which forms two hydrogen bonds (one to the OH‐group of the inner Al4(OH)4 cycle and one through the alcohol OH‐group to a Si–O–Al moiety. The alcohol adducts have been characterized in solution through 1H‐, 13C‐ and 29Si‐NMR and show dynamic equilibria between the oligoalumosiloxane [Ph2SiO]8[Al(O)OH]4 and the alcohol molecules.  相似文献   

13.
14.
The Reaction Behaviour of the Polycylic Oligoalumosiloxane [Ph2SiO]8[AlO(OH)]4 towards Hexamethyldisilazane The reaction of the oligoalumosiloxane [Ph2SiO]8[AlO(OH)]4 ( 1 ) with hexamethyldisilazane leads to the triple ionic [Ph2SiO]8[AlO2]2[AlO(O‐SiMe3)]2[NH4·THF]2·2 THF ( 2 ) and in the presence of pyridine to [Ph2SiO]8[AlO1.5]4·2py·1.5 C7H8 ( 3 ). Apart from the usual characterization techniques (NMR and IR spectroscopy) the molecular structures of 2 and 3 have been determined by single‐X‐ray diffraction analyses. Both alumosiloxanes 2 and 3 present new types of molecular structures with a central four membered Al2O2‐ring, on which the further aluminium atoms are attached via oxygen atoms. This leads to an Al4‐lozenge, which is centered in subtriangles by oxygen atoms.  相似文献   

15.
The crystal structures of 1,2‐dihydro‐1,1′‐bi[thiazolo[3,2‐a]quinoline]‐10a,10a′‐diium diiodide hemihydrate, C22H16N2S22+·2I·0.5H2O, and 1,2‐dihydro‐1,1′‐bi[thiazolo[3,2‐a]quinoline]‐10a,10a′‐diium iodide triiodide, C22H16N2S22+·I·I3, obtained during the reaction of 1,4‐bis(quinolin‐2‐ylsulfanyl)but‐2‐yne (2TQB) with iodine, have been determined at 120 K. The crystalline products contain the dication as a result of the reaction proceeding along the iodocyclization pathway. This is fundamentally different from the previously observed reaction of 1,4‐bis(quinolin‐8‐ylsulfanyl)but‐2‐yne (8TQB) with iodine under similar conditions. A comparative analysis of the possible conformational states indicates differences in the relative stabilities and free rotation for the 2‐ and 8‐thioquinoline derivatives which lead to a disparity in the convergence of the potential reaction centres for 2TQB and 8TQB.  相似文献   

16.
The first coordination polymer of 2,2′‐((4‐carboxymethyl‐1,3‐phenylene)bis(oxy)) diacetic acid (H3L) with europium(III) ion, [Eu(L)(H2O)]·3H2O ( 1 ), has been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a 3D coordination polymer with helical chain and rtl topology of the point symbol (4·62)2(42·610·83) based on [Eu2(COO)4] as secondary building unit (SBU). Furthermore, the luminescent and magnetic properties of complex 1 are studied.  相似文献   

17.
Treatment of 5,11,17,23‐tetrakis[(p‐carboxyphenyl)azo]‐25,26,27,28‐tetrahydroxy calix[4]arene ( 2 ) with HCl in DMF or NaOH in MeOH produced 5,11,17,23‐tetrakis[(p‐carboxyphenyl)azo]‐25,26,27,28‐tetrahydroxycalix[4]‐arene·4DMF (2·4DMF) and 5,11,17,23‐tetrakis[(p‐carboxyphenylsodium)azo]‐25,26,27,28‐tetrahydroxycalix[4]‐ arene ( 3 ), respectively, which were characterized by elemental analysis, IR, UV‐vis, 1H NMR and 13C NMR. An X‐ray analysis of 2·4DMF revealed that its calix[4]arene core adopts a flattened cone conformation in which opposed phenyl groups take parallel or sharply inclined positions. The intra‐ and intermolecular hydrogen‐bonding interactions and the π···π interactions form a 2D hydrogen‐bonded wavelike network. Compound 2 had a unique reversible color change in a wide pH range from 1 to 13.5 and showed interesting pH sensing properties.  相似文献   

18.
Neutral binuclear ruthenium complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 of the general formula [{RuCl26p‐cym)}2 μ‐(NN)] (NN = bis(nicotinate)‐ and bis(isonicotinate)‐polyethylene glycol esters: (3‐py)COO(CH2CH2O)nCO(3‐py) and (4‐py)COO(CH2CH2O)nCO(4‐py), n =1–4), as well as mononuclear [RuCl26p‐cym)((3‐py)COO(CH2CH2OCH3)‐κN)], complex 9 , were synthesized and characterized using elemental analysis and electrospray ionization high‐resolution mass spectrometry, infrared, 1H NMR and 13C NMR spectroscopies. Stability of the binuclear complexes in the presence of dimethylsulfoxide was studied. Furthermore, formation of a cationic complex containing bridging pyridine‐based bidentate ligand was monitored using 1H NMR spectroscopy. Ligand precursors, polyethylene glycol esters of nicotinic ( L1 · 2HCl– L4 · 2HCl and L9 · HCl) and isonicotinic acid dihydrochlorides ( L5 · 2HCl– L8 · 2HCl), binuclear ruthenium(II) complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and mononuclear complex 9 were tested for in vitro cytotoxicity against 518A2 (melanoma), 8505C (anaplastic thyroid cancer), A253 (head and neck tumour), MCF‐7 (breast tumour) and SW480 (colon carcinoma) cell lines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The coordination polymers [Cu2(tpim)2] · 2H2O ( 1 ) and [Co(H2tpim)2(MoO4)2] ( 2 ) [Htpim = 2,4,5‐tri(4‐pyridyl)‐imidazole] were synthesized. Their structures were determined by single‐crystal X‐ray diffraction and further characterized by elemental analyses, IR spectroscopy, and TG analyses. Compounds 1 and 2 both contain chiral helical‐layer structures. Compound 1 exhibits a novel 3D (3,3,4)‐connected framework with (4 · 6 · 8)(6 · 82)(4 · 6 · 83 · 10) topology, which is constructed from left‐ and right‐ helices. Compound 2 displays a 2D chiral helical‐layer structure which can be rationalized as a (3,6)‐connected 2D kgd (kagome dual) net, and these 2D layers are further extended by hydrogen‐bonding interactions to form a 3D supramolecular network. By comparing compounds 1 and 2 , it is believed that the tripodal N‐containing ligand (Htpim) plays a key role in the construction of helical coordination polymers. In addition, the photoluminescence property of compound 1 and the magnetic property of compound 2 were studied.  相似文献   

20.
Two new organically templated germanates, [GeO2]10·C2N2H8·H2O ( 1 ) and [GeO2]10·C3N2H10·H2O ( 2 ) have been synthesized under solvothermal conditions. The two compounds are isostructural and have three‐dimensional open‐framework architectures built up from Ge8O20 double four‐ring units and GeO4 tetrahedra. These building units are connected in such a way that they form a zeolite‐like porous framework with large 12‐ring channels along the [001] direction, where the organic amines reside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号