首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The butylidene‐linker models 1‐[2‐(2,6‐dimethylsulfanyl‐9H‐purin‐9‐yl)‐2‐methylidenepropyl]‐4,6‐bis(methylsulfanyl)‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H20N8S4, (XI), 7,7′‐(2‐methylidenepropane‐1,3‐diyl)bis[3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one], C20H22N6O2S2, (XIV), and 7‐[2‐(4,6‐dimethylsulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐2‐methylidenepropyl]‐3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one, C19H21N7OS3, (XV), show folded conformations in solution, as shown by 1H NMR analysis. This folding carries over to the crystalline state. Intramolecular π–π interactions are observed in all three compounds, but only (XIV) shows additional intramolecular C—H...π interactions in the solid state. As far as can be established, this is the first report incorporating the pyrrolo[2,3‐d]pyrimidine nucleus for such a study. In addition to the π–π interactions, the crystal structures are also stabilized by other weak intermolecular C—H...S/N/O and/or S...N/S interactions.  相似文献   

2.
A series of novel 7,9‐dihydrothieno[3′,2′:5,6]pyrido[2,3‐d]pyrimidine‐4,6(3H,5H)‐dione derivatives were synthesized efficiently via the catalyst‐free reaction of aldehyde, ethyl 2,4‐dioxotetrahydrothiophene‐3‐carboxylate, and 2,6‐diaminopyrimidine‐4(3H)‐one through the sequence of deethoxycarbonylation and three‐component condensation in aqueous media. This protocol featured mild reaction conditions, high yields, easy work‐up, and environmentally friendly procedure.  相似文献   

3.
The reaction of one equivalent of LAlH2 ( 1 ; L=HC(CMeNAr)2, Ar=2,6‐iPr2C6H3, β‐diketiminate ligand) with two equivalents of 2‐mercapto‐4,6‐dimethylpyrimidine hydrate resulted in LAl[(μ‐S)(m‐C4N2H)(CH2)2]2 ( 2 ) in good yield. Similarly, when N‐2‐pyridylsalicylideneamine, N‐(2,6‐diisopropylphenyl)salicylaldimine, and ethyl 3‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐2‐carboxylate were used as starting materials, the corresponding products LAl[(μ‐O)(o‐C6H4)CN(C5NH4)]2 ( 3 ), LAlH[(μ‐O)(o‐C4H4)CN(2,6‐iPr2C6H3)] ( 4 ), and LAl[(μ‐NH)(o‐C8SH8)(COOC2H5)]2 ( 5 ) were isolated. Compounds 2 – 5 were characterized by 1H and 13C NMR spectroscopy as well as by single‐crystal X‐ray structural analysis. Surprisingly, compounds 2 – 5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN).  相似文献   

4.
Treatment of 2‐(methyl 3‐O‐benzyl‐4,6‐O‐benzylidene‐2‐deoxy‐α‐d‐altropyranosid‐2‐yl)ethanal (3) with malononitrile in the presence of aluminium oxide provided 2‐cyano‐4‐(methyl 3‐O‐benzyl‐4,6‐O‐benzylidene‐2‐deoxy‐α‐d‐altropyranosid‐2‐yl)crotononitrile (4). Starting from 4, cyclization with sulphur and triethylamine yielded 2‐amino‐5‐(methyl 3‐O‐benzyl‐4,6‐O‐benzylidene‐2‐deoxy‐α‐d‐altropyranosid‐2‐yl)thiophene‐3‐carbonitrile (5). Further cyclization could be achieved with triethyl orthoformate/ammonia to furnish 4‐amino‐6‐(methyl 3‐O‐benzyl‐4,6‐O‐benzylidene‐2‐deoxy‐α‐d‐altropyranosid‐2‐yl)thieno[2.3‐d]pyrimidine (8).  相似文献   

5.
Isoxazolo[5,4‐d]pyrimidine‐4,6(5H,7H)diones 2a – 2f have been synthesized from the reaction of ethyl 5‐amino‐3‐methyl‐4‐isoxazole carboxylate ( 1 ) with aryl isocyanates in the presence of Keggin heteropolyacid H3[PW12O40] as a green solid acid catalyst at room temperature in a one‐pot process in good yields.  相似文献   

6.
In the crystal structures of 4,6‐di­methyl­thio‐1‐[3‐(4,6‐di­methyl­thio‐2H‐pyra­zolo­[3,4‐d]­py­rimi­din‐2‐yl)­propyl]‐1H‐py­ra­­zolo­[3,4‐d]­py­rimi­dine, C17H20N8S4, and 1‐[4‐(4‐meth­oxy‐6‐methyl­thio‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐1‐yl)­butyl]‐5‐meth­yl‐6‐methyl­thio‐4,5‐di­hydro‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐4‐one, C18H22N8O2S2, only intermolecular stacking due to aromatic π–π interactions between pyrazolo­[3,4‐d]­pyrimidinerings is present.  相似文献   

7.
Starting from d‐mannose, d‐galactose and d‐glucosamine hydrochloride, two disaccharide blocks were synthesized. Schmidt's inverse addition technique of trichloroacetimidate was utilized for the construction of a disaccharide with a β‐mannosidic linkage in good yield. The other disaccharide had a methyl 4,6‐(R)‐pyruvate ester. The two disaccharides in the appropriate form were then allowed to react in the presence of N‐iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH) to give the desired tetrasaccharide derivative, 2‐(trimethylsilyl)ethyl 2‐acetamido‐3,4,6‐tri‐O‐benzoyl‐2‐deoxy‐β‐d‐glucopyranosyl‐(1→3)‐2‐O‐benzoyl‐4,6‐O‐[(R)‐1‐methoxycarbonylethylidene]‐β‐d‐galactopyranosyl‐(l→4)‐2,3,6‐tri‐O‐benzyl‐β‐d‐mannopyranosyl‐(1→4)‐2,6‐di‐O‐benzyl‐3‐O‐(4‐methoxybenzyl)‐β‐d‐galactopyranoside.  相似文献   

8.
The reduction of N,C,N‐chelated bismuth chlorides [C6H3‐2,6‐(CH?NR)2]BiCl2 [where R=tBu ( 1 ), 2′,6′‐Me2C6H3 ( 2 ), or 4′‐Me2NC6H4 ( 3 )] or N,C‐chelated analogues [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]BiCl2 ( 4 ) and [C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]BiCl2 ( 5 ) is reported. Reduction of compounds 1 – 3 gave monomeric N,C,N‐chelated bismuthinidenes [C6H3‐2,6‐(CH?NR)2]Bi [where R=tBu ( 6 ), 2′,6′‐Me2C6H3 ( 7 ) or 4′‐Me2NC6H4 ( 8 )]. Similarly, the reduction of 4 led to the isolation of the compound [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]Bi ( 9 ) as an unprecedented two‐coordinated bismuthinidene that has been structurally characterized. In contrast, the dibismuthene {[C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]Bi}2 ( 10 ) was obtained by the reduction of 5 . Compounds 6 – 10 were characterized by using 1H and 13C NMR spectroscopy and their structures, except for 7 , were determined with the help of single‐crystal X‐ray diffraction analysis. It is clear that the structure of the reduced products (bismuthinidene versus dibismuthene) is ligand‐dependent and particularly influenced by the strength of the N→Bi intramolecular interaction(s). Therefore, a theoretical survey describing the bonding situation in the studied compounds and related bismuth(I) systems is included. Importantly, we found that the C3NBi chelating ring in the two‐coordinated bismuthinidene 9 exhibits significant aromatic character by delocalization of the bismuth lone pair.  相似文献   

9.
4,6‐O‐Benzylidenation of D‐galactal with PhCH(OCH3)2 catalyzed by bromodimethylsulfonium bromide leads to methyl 2‐dexoy‐4,6‐O‐benzylidene galactopyranoside efficiently, which serves as a key intermediate to the ready preparation of 2,3‐ and 2,6‐dideoxy galactopyranosides.  相似文献   

10.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

11.
Explosive detection and identification play an important role in the environmental and forensic sciences. However, accurate identification of isomeric compounds remains a challenging task for current analytical methods. The combination of electrospray multistage mass spectrometry (ESI‐MSn) and high resolution mass spectrometry (HRMS) is a powerful tool for the structure characterization of isomeric compounds. We show herein that resonant ion activation performed in a linear quadrupole ion trap allows the differentiation of dinitrotoluene isomers as well as aminodinitrotoluene isomers. The explosive‐related compounds: 2,4‐dinitrotoluene (2,4‐DNT), 2,6‐dinitrotoluene (2,6‐DNT), 2‐amino‐4,6‐dinitrotoluene (2A‐4,6‐DNT) and 4‐amino‐2,6‐dinitrotoluene (4A‐2,6‐DNT) were analyzed by ESI‐MS in the negative ion mode; they produced mainly deprotonated molecules [M ? H]?. Subsequent low resolution MSn experiments provided support for fragment ion assignments and determination of consecutive dissociation pathways. Resonant activation of deprotonated dinitrotoluene isomers gave different fragment ions according to the position of the nitro and amino groups on the toluene backbone. Fragment ion identification was bolstered by accurate mass measurements performed using Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR/MS). Notably, unexpected results were found from accurate mass measurements performed at high resolution for 2,6‐DNT where a 30‐Da loss was observed that corresponds to CH2O departure instead of the expected isobaric NO? loss. Moreover, 2,4‐DNT showed a diagnostic fragment ion at m/z 116, allowing the unambiguous distinction between 2,4‐ and 2,6‐DNT isomers. Here, CH2O loss is hindered by the presence of an amino group in both 2A‐4,6‐DNT and 4A‐2,6‐DNT isomers, but nevertheless, these isomers showed significant differences in their fragmentation sequences, thus allowing their differentiation. DFT calculations were also performed to support experimental observations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The crystal structures of 1‐{5‐[4,6‐bis­(methyl­sulfanyl)‐2H‐py­razolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐6‐methyl­sulfanyl‐4‐(pyr­rolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C22H29N9S3, and 6‐methyl­sulfanyl‐1‐{5‐[6‐methyl­sulfanyl‐4‐(pyrrolidin‐1‐yl)‐2H‐pyrazolo­[3,4‐d]­pyrimidin‐2‐yl]­pentyl}‐4‐(pyrrolidin‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C25H34N10S2, which differ in having either a pyrrolidine substituent or a methylsulfanyl group, show intermolecular stacking due to aromatic π–π interactions between the pyrazolo­[3,4‐d]­pyrimidine rings.  相似文献   

13.
The design and synthesis of 3d–4f heterometallic coordination polymers have attracted much interest due to the intriguing diversity of their architectures and topologies. Pyridine‐2,6‐dicarboxylic acid (H2pydc) has a versatile coordination mode and has been used to construct multinuclear and heterometallic compounds. Two isostructural centrosymmetric 3d–4f coordination compounds constructed from pyridine‐2,6‐dicarboxylic acid and 4,4′‐bipyridine (bpy), namely 4,4′‐bipyridine‐1,1′‐diium diaquabis(μ2‐pyridine‐2,6‐dicarboxylato)tetrakis(pyridine‐2,6‐dicarboxylato)bis[4‐(pyridin‐4‐yl)pyridinium]cobalt(II)dieuropium(III) octahydrate, (C10H10N2)[CoEu2(C10H9N2)2(C7H3NO4)6(H2O)2]·8H2O, (I), and 4,4′‐bipyridine‐1,1′‐diium diaquabis(μ2‐pyridine‐2,6‐dicarboxylato)tetrakis(pyridine‐2,6‐dicarboxylato)bis[4‐(pyridin‐4‐yl)pyridinium]cobalt(II)diterbium(III) octahydrate, (C10H10N2)[CoTb2(C10H9N2)2(C7H3NO4)6(H2O)2]·8H2O, (II), were synthesized under hydrothermal conditions and characterized by IR and fluorescence spectroscopy, thermogravimetric analysis and powder X‐ray diffraction. Both compounds crystallize in the triclinic space group P. The EuIII and TbIII cations adopt nine‐coordinated distorted tricapped trigonal–prismatic geometries bridged by three pydc2? ligands. The CoII cation has a six‐coordination environment formed by two pydc2? ligands, two bpy ligands and two coordinated water molecules. Adjacent molecules are connected by π–π stacking interactions to form a one‐dimensional chain, which is further extended into a three‐dimensional supramolecular network by multipoint hydrogen bonds.  相似文献   

14.
The derivatives of pyrimidin‐4‐one can adopt either a 1H‐ or a 3H‐tautomeric form, which affects the hydrogen‐bonding interactions in cocrystals with compounds containing complementary functional groups. In order to study their tautomeric preferences, we crystallized 2,6‐diaminopyrimidin‐4‐one and 2‐amino‐6‐methylpyrimidin‐4‐one. During various crystallization attempts, four structures of 2,6‐diaminopyrimidin‐4‐one were obtained, namely solvent‐free 2,6‐diaminopyrimidin‐4‐one, C4H6N4O, (I), 2,6‐diaminopyrimidin‐4‐one–dimethylformamide–water (3/4/1), C4H6N4O·1.33C3H7NO·0.33H2O, (Ia), 2,6‐diaminopyrimidin‐4‐one dimethylacetamide monosolvate, C4H6N4O·C4H9NO, (Ib), and 2,6‐diaminopyrimidin‐4‐one–N‐methylpyrrolidin‐2‐one (3/2), C4H6N4O·1.5C5H9NO, (Ic). The 2,6‐diaminopyrimidin‐4‐one molecules exist only as 3H‐tautomers. They form ribbons characterized by R22(8) hydrogen‐bonding interactions, which are further connected to form three‐dimensional networks. An intermolecular N—H...N interaction between amine groups is observed only in (I). This might be the reason for the pyramidalization of the amine group. Crystallization experiments on 2‐amino‐6‐methylpyrimidin‐4‐one yielded two isostructural pseudopolymorphs, namely 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–dimethylacetamide (1/1/1), C5H7N3O·C5H7N3O·C4H9NO, (IIa), and 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H7N3O·C5H7N3O·C5H9NO, (IIb). In both structures, a 1:1 mixture of 1H‐ and 3H‐tautomers is present, which are linked by three hydrogen bonds similar to a Watson–Crick C–G base pair.  相似文献   

15.
Pyrazolo‐[3,4‐d]pyrimidine‐4,6‐diones 5 and pyrazolo[4,3‐d]pyrimidine‐5,7‐diones 7 were synthesized by Curtius rearrangement of pyrazolic mono‐esters 2 and 3 followed by hetero‐cyclization via the ureas derivatives 4 and 6 under alkaline conditions.  相似文献   

16.
The antibiotic nitrofurantoin {systematic name: (E)‐1‐[(5‐nitro‐2‐furyl)methylideneamino]imidazolidine‐2,4‐dione} is not only used for the treatment of urinary tract infections, but also illegally applied as an animal food additive. Since derivatives of 2,6‐diaminopyridine might serve as artificial receptors for its recognition, we crystallized one potential drug–receptor complex, nitrofurantoin–2,6‐diacetamidopyridine (1/1), C8H6N4O5·C9H11N3O2, (I·II). It is characterized by one N—H...N and two N—H...O hydrogen bonds and confirms a previous NMR study. During the crystallization screening, several new pseudopolymorphs of both components were obtained, namely a nitrofurantoin dimethyl sulfoxide monosolvate, C8H6N4O5·C2H6OS, (Ia), a nitrofurantoin dimethyl sulfoxide hemisolvate, C8H6N4O5·0.5C2H6OS, (Ib), two nitrofurantoin dimethylacetamide monosolvates, C8H6N4O5·C4H9NO, (Ic) and (Id), and a nitrofurantoin dimethylacetamide disolvate, C8H6N4O5·2C4H9NO, (Ie), as well as a 2,6‐diacetamidopyridine dimethylformamide monosolvate, C9H11N3O2·C3H7NO, (IIa). Of these, (Ia), (Ic) and (Id) were formed during cocrystallization attempts with 1‐(4‐fluorophenyl)biguanide hydrochloride. Obviously nitrofurantoin prefers the higher‐energy conformation in the crystal structures, which all exhibit N—H...O and C—H...O hydrogen‐bond interactions. The latter are especially important for the crystal packing. 2,6‐Diacetamidopyridine shows some conformational flexibility depending on the hydrogen‐bond pattern.  相似文献   

17.
Two series of a total of ten cocrystals involving 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton‐accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C 73 , 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐bromothiophene‐2‐carboxylic acid (1/1), 1 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐chlorothiophene‐2‐carboxylic acid (1/1), 2 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2,4‐dichlorobenzoic acid (1/1), 3 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐aminobenzoic acid (1/1), 4 , the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H…N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion‐related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H…O and O—H…N hydrogen bonds to form a large cage‐like tetrameric unit with an R42(20) graph‐set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H…N hydrogen bonds, generating R22(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐methylthiophene‐2‐carboxylic acid (1/1), 5 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–benzoic acid (1/1), 6 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐methylbenzoic acid (1/1), 7 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐methylbenzoic acid (1/1), 8 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐methylbenzoic acid (1/1), 9 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐aminobenzoic acid (1/1), 10 , the carboxyl group interacts with position N3 and the adjacent 4‐amino group of the corresponding pyrimidine ring via O—H…N and N—H…O hydrogen bonds to generate the robust R22(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H…N hydrogen‐bond interactions in a linear fashion to form a chain‐like arrangement. In cocrystal 1 , a Br…Br halogen bond is present, in cocrystals 2 and 3 , Cl…Cl halogen bonds are present, and in cocrystals 5 , 6 and 7 , Cl…O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed.  相似文献   

18.
The diazonium salt derived from 4‐amino‐N,1,3‐trimethyl‐N‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐1H‐pyrazole‐5‐carboxamide ( 14 ) was reacted with a mixture of CuSO4 and NaCl, with ascorbic acid as an initiator to afford the planar derivative 4,6‐dihydro‐1,4,6,8‐tetramethyl‐3‐phenyldipyrazolo[3,4‐b:4′,3′‐d]pyridin‐5(3H)‐one ( 16 ) and its unexpected isomer 4,6‐dihydro‐3,4,6,8‐tetramethyl‐1‐phenyldipyrazolo[4,3‐b:4′,3′‐d]pyridin‐5(1H)‐one ( 17 ), as well as the epimers (3S,4S)‐ (or (3S,4R)‐) and (3S,4R)‐ (or (3S,4S)‐) 4‐chloro‐2,4‐dihydro‐1′,3′,5,5′‐tetramethyl‐2‐phenylspiro[pyrazole‐3,4′(1′H)‐pyrrolo[3,4‐c]pyrazol]‐6′(5′H)‐one ( 18a and b , respectively). Epimers 18a and b were converted under basic conditions to 4′‐chloro‐N,1,3,3′‐tetramethyl‐1′‐phenyl‐[4,5′‐bi‐1H‐pyrazole]‐5‐carboxamide ( 19 ). The structures of isomers 16 and 17 determined by single‐crystal X‐ray analysis are also reported. Linear dichroism (LD) measurements for the above isomers suggest that 17 intercalates into DNA, and 17 exhibited antiproliferation activity against human NCI‐H460 pulmonary carcinoma cells.  相似文献   

19.
The reaction of different stoichiometric amounts of Zn(NCS)2 with 3‐cyanopyridine in different solvents leads to the formation of several new coordination compounds, which were structurally characterized and investigated for their thermal behavior. In Zn(NCS)2(3‐cyanopyridine)4 ( 1 ) and Zn(NCS)2(3‐cyanopyridine)2(H2O)2 · (3‐cyanopyridine)2 ( 2 ) the zinc cations are octahedrally coordinated by two terminally N‐bonded thiocyanate anions and four 3‐cyanopyridine ( 1 ) or two 3‐cyanopyridine and two water molecules ( 2 ) within slightly distorted octahedra. Zn(NCS)2(3‐cyanopyridine)2 ( 3 ) and Zn(NCS)2(3‐cyanopyridine)2 · (H2O)0.5 ( 3‐H2O ) also form discrete complexes but with tetrahedrally coordinated Zn cations. Upon heating compound 1 decomposes without the formation of any intermediate compound. In contrast, compound 2 loses the water molecules in the first step and transforms into compound 1 . Surprisingly, upon further heating a second TG step is observed, in which compound 3 is formed as an intermediate, which is not observed if compound 1 is heated directly. The tetrahedral complex 3 melts leading to the formation of an amorphous phase. If the hemihydrate 3‐H2O is heated, it transforms into 3 via melting and crystallization but there are hints that a metastable phase might form as intermediate on water removal.  相似文献   

20.
The structures of cocrystals of 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, C6H4Cl2O·C4H7N5, (III), and 2,6‐dichloroaniline with 2,6‐diaminopyrimidin‐4(3H)‐one and N,N‐dimethylacetamide, C6H5Cl2N·C4H6N4O·C4H9NO, (V), plus three new pseudopolymorphs of their coformers, namely 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N,N‐dimethylacetamide (1/1), C4H7N5·C4H9NO, (I), 2,4‐diamino‐6‐methyl‐1,3,5‐triazine–N‐methylpyrrolidin‐2‐one (1/1), C4H7N5·C5H9NO, (II), and 6‐aminoisocytosine–N‐methylpyrrolidin‐2‐one (1/1), C4H6N4O·C5H9NO, (IV), are reported. Both 2,6‐dichlorophenol and 2,6‐dichloroaniline are capable of forming definite synthon motifs, which usually lead to either two‐ or three‐dimensional crystal‐packing arrangements. Thus, the two isomorphous pseudopolymorphs of 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, i.e. (I) and (II), form a three‐dimensional network, while the N‐methylpyrrolidin‐2‐one solvate of 6‐aminoisocytosine, i.e. (IV), displays two‐dimensional layers. On the basis of these results, attempts to cocrystallize 2,6‐dichlorophenol with 2,4‐diamino‐6‐methyl‐1,3,5‐triazine, (III), and 2,6‐dichloroaniline with 6‐aminoisocytosine, (V), yielded two‐dimensional networks, whereby in cocrystal (III) the overall structure is a consequence of the interaction between the two compounds. By comparison, cocrystal–solvate (V) is mainly built by 6‐aminoisocytosine forming layers, with 2,6‐dichloroaniline and the solvent molecules arranged between the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号