首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

2.
2,3‐Dihydro‐6‐hydroxy‐5‐methoxy‐7H‐dibenzo[de,h]quinolin‐7‐one, 6‐hydroxy‐5‐methoxy‐7H‐dibenzo[de,h]quinolin‐7‐one, and 2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐1‐yl)benzyl benzoate, easily available by a Bischler–Napieralski cyclization, were used as starting materials to afford 6‐oxoisoaporphine and 2,3‐dimethoxy‐5,6,8,12b‐tetrahydroisoindolo[1,2‐a]isoquinoline as the main products. However, the catalytic hydrogenation of the benzyl benzoate derivative afforded, under mild conditions, 1,2,3,4‐tetrahydro‐6,7‐dimethoxy‐1‐(2‐methylphenyl)isoquinoline.  相似文献   

3.
In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α‐methylidene‐γ‐butyrolactones bearing 3,4‐dihydroquinolin‐2(1H)‐one moieties. O‐Alkylation of 3,4‐dihydro‐8‐hydroxyquinolin‐2(1H)‐one ( 1 ) with chloroacetone under basic conditions afforded 3,4‐dihydro‐8‐(2‐oxopropoxy)quinolin‐2(1H)‐one ( 2a ) and tricyclic 2,3,6,7‐tetrahydro‐3‐hydroxy‐3‐methyl‐5H‐pyrido[1,2,3‐de][1,4]benzoxazin‐5‐one ( 3a ) in a ratio of 1 : 2.84. Their Reformatsky‐type condensation with ethyl 2‐(bromomethyl)prop‐2‐enoate furnished 3,4‐dihydro‐8‐[(2,3,4,5‐tetrahydro‐2‐methyl‐4‐methylidene‐5‐oxofuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 4a ), which shows antiplatelet activity, in 70% yield. Its 2′‐Ph derivatives, and 6‐ and 7‐substituted analogs were also obtained from the corresponding 3,4‐dihydroquinolin‐2(1H)‐ones via alkylation and the Reformatsky‐type condensation. Of these compounds, 3,4‐dihydro‐7‐[(2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxo‐2‐phenylfuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 10b ) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC50 of 0.23 μM . For the inhibition of platelet‐activating factor (PAF) induced aggregation, 6‐{[2‐(4‐fluorophenyl)‐2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxofuran‐2‐yl]methoxy}‐3,4‐dihydroquinolin‐2(1H)‐one ( 9c ) was the most potent with an IC50 value of 1.83 μM .  相似文献   

4.
The reaction of the quinoxaline N‐oxide 1 with thiophene‐2‐carbaldehyde gave 6‐chloro‐2‐[1‐methyl‐2‐(2‐thienylmethylene)hydrazino]quinoxaline 4‐oxide 5 , whose reaction with 2‐chloroacrylonitrile afforded 8‐chloro‐2,3‐dihydro‐4‐hydroxy‐1‐methyl‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]quinoxaline‐5‐carbonitrile 6 . The reaction of compound 6 with various alcohols in the presence of a base effected alcoholysis to provide the 5‐alkoxy‐8‐chloro‐2,3,4,6‐tetrahydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 7a‐d . The reaction of compounds 7a and 7b with diethyl azodicarboxylate effected dehydrogenation to give the 5‐alkoxy‐8‐chloro‐4,6‐dihydro‐1‐methyl‐4‐oxo‐3‐(2‐thienyl)‐1H‐1,2‐diazepino[3,4‐b]‐quinoxalines 8a and 8b , respectively. Compounds 8a and 8b were found to show good algicidal activities against Selenastrum capricornutum and Nitzchia closterium.  相似文献   

5.
A concise and efficient base‐induced synthesis of stair‐shaped, 4‐methylthio‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 3 ) has been delineated by the reaction of 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) and methyl 2‐cyano‐3,3‐dimethylthioacrylate in DMSO using powdered KOH as a base at room temperature. Amination of 3 has been achieved by reaction with secondary amine in ethanol at reflux temperature to yield 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 4 ). Reaction of 3 with aryl methyl ketone ( 5 ) in DMSO at room temperature using powdered KOH as a base produced stair‐shaped 5‐aryl‐7,8‐dihydro‐1,4‐dioxa‐2,3‐dioxodinaphtho[1,2‐b,d]oxepine ( 6 ) in good yields. However, reaction of 6‐aryl‐2H‐pyran‐2‐one‐3‐carbonitrile ( 8 ) with 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) did not give similar product, but in lieu 4‐aryl‐5,6‐dihydronaphtho[1,2‐b]oxepino[4,5‐b]pyran‐2‐ylidene)acetonitrile ( 9 ) was isolated and characterized.  相似文献   

6.
A series of 4‐aryl‐3,7,7‐trimethyl‐1‐phenyl‐7,8‐dihydro‐1H‐pyrazolo[3,4‐b]quinolin‐ 5(6H)‐ones were synthesized by the three‐component reaction of aromatic aldehydes, 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐amine, and 5,5‐dimethyl‐1,3‐cyclohexandione in the presence of sodium 1‐dodecanesulfonate in aqueous medium. Compared to the previous methods, this new protocol has the advantages of convenient operation, higher yields, lower cost, and environmentally benign procedure. J. Heterocyclic Chem., (2012).  相似文献   

7.
A series of 4‐aryl‐3,7,7‐trimethyl‐1‐phenyl‐7,8‐dihydro‐1H‐pyrazolo[3,4‐b]quinolin‐5(6H)‐ones were synthesized via the three‐component reaction of aromatic aldehydes, 5,5‐dimethyl‐1,3‐cyclohexandione and 5‐amino‐3‐methyl‐1‐phenylpyrazole in ionic liquid without using any catalyst. This protocol has the advantages of easier work‐up, milder reaction conditions, short reaction time, and environmentally benign procedure. J. Heterocyclic Chem., (2011).  相似文献   

8.
When 2,3‐dichloro‐1,4‐naphthoquinone (DCHNQ) ( 1 ) is allowed to react with 1‐phenylbiguanide (PBG) ( 2 ), 4‐chloro‐2,5‐dihydro‐2,5‐dioxonaphtho[1,2‐d]imidazole‐3‐carboxylic acid phenyl amide ( 4 ), 6‐chloro‐8‐phenylamino‐9H‐7,9,11‐triaza‐cyclohepta[a]naphthalene‐5,10‐dione ( 5 ) and 4‐dimethyl‐amino‐5,10‐dioxo‐2‐phenylimino‐5,10‐dihydro‐2H‐benzo[g]quinazoline‐1‐carboxylic acid amide ( 6 ) were obtained. While on reacting 1 with 2‐guanidinebenzimidazole (GBI) ( 3 ) the products are 3‐(1H‐benzoimidazol‐2‐yl)‐4‐chloro‐3H‐naphtho[1,2‐d]imidazole‐2,5‐dione ( 7 ) and 3‐[3‐(1H‐benzoimidazol‐2‐yl)‐ureido]‐1,4‐dioxo‐1,4‐dihydronaphthalene‐2‐carboxylic acid dimethylamide ( 8 ).  相似文献   

9.
The oxoisoaporphines 2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one, 2,3‐dihydro‐5‐methoxy‐7H‐dibenzo [de,h] quinolin‐7‐one, 5‐methoxy‐6‐hydroxy‐2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one, 5,6‐dimethoxy‐2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one and 5,6‐methylenedi‐oxy‐2,3‐dihydro‐7H‐dibenzo[de,h]quinolin‐7‐one were prepared by cyclization of phenylethylaminophthalides with polyphosphoric acid or by treating 1‐(2‐carboxyphenyl)‐3,4‐dihydroisoquinoline hydrochloride with sulfuric acid at 0 °C. The structures were confirmed and 1H and 13C NMR spectra were completely assigned using a combination of one‐ and two‐dimensional NMR techniques. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Ring closing metathesis of 8‐allyl‐9‐butenylpurines or N,9‐diallyl‐N‐methyl‐9H‐purin‐8‐amines with the Grubbs second generation catalyst resulted in fused 9,10‐dihydro‐6H‐azepino[1,2‐e]purines or 9,10‐dihydro‐6H‐[1,3]diazepino[1,2‐e]purines, respectively. The 8‐allyl‐9‐butenylpurines were prepared from 8‐bromo‐9‐butenylpurines after Stille coupling with allyltributyltin. The N,9‐diallyl‐N‐methyl‐9H‐purin‐8‐amines were synthesized from 9‐allyl‐8‐bromopurines after treatment with allylamine in H2O under MW irradiation, followed by methylation with MeI in KOH. The new compounds were tested as inhibitors of lipid peroxidation. 6‐Methyl‐4‐(morpholin‐4‐yl)‐7,10‐dihydro‐6H‐[1,3]diazepino[1,2‐e]purine presents interesting results and could serve as a lead compound.  相似文献   

11.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

12.
The reaction between ethyl 2‐chloro‐3‐(phenylamino)but‐2‐enoate ( 5 ) and aniline gave 4‐methyl‐3‐(phenylamino)quinolin‐2(1H)‐one ( 6 ) and not, as reported earlier in the literature, the isomeric 2‐methyl‐3‐(phenylamino)quinolin‐4(1H)‐one ( 1 ). The latter could be prepared by an alternative procedure. The structures of both isomers were established by extensive NMR spectroscopy including 1D‐NOE, 2D‐HSQC, and HMBC experiments. Consequently, the reinvestigation of the title reaction revealed an unexpected simple access to novel 4‐alkyl‐substituted 3‐(arylamino)quinolin‐2(1H)‐ones.  相似文献   

13.
3‐Benzylindole‐2‐carbohydrazides (4) on reaction with triethylorthoformate in a polar solvent like DMF yielded only 10‐benzyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) while (4) on reaction with triethylorthoacetate in DMF yielded both 10‐benzyl‐4‐methyl‐1,2‐dihydro‐1‐oxo‐1,2,4‐triazino[4,5‐a]indoles (5) and 3‐benzyl‐2‐(5‐methyl‐1,3,4‐oxadiazol‐2‐yl)indoles (6) instead of only the triazinoindoles as expected. The oxadiazolylindoles (6) were also synthesized by refluxing (4) with excess of orthoesters. The structures of the compounds formed were characterized by their analytical and spectral data.  相似文献   

14.
The 3‐amino‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐one 6 and N‐(1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxalin‐3‐yl)carbamates 17a,b were synthesized from the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxa‐line‐3‐carboxylate 1b via the 1,5‐dihydro‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐3‐carbohydrazide 13b and then 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carboxazide 8 . Heating of compound 13b and arylalde‐hydes afforded the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carbo(2‐arylmethylene)hydrazides 14a‐d.  相似文献   

15.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

16.
By heating 2‐chloromethyl‐3,‐5‐dimethyl‐4‐methoxypyridine (1) either neat or in solution methoxy group cleavage was achieved, followed by dimerisation to poorly soluble 6,12‐dihydro‐1,3,7,9‐tetramethyl‐5H,11H‐dipyrido[1,2‐a:1′,2′‐d]pyrazine‐2,8‐dione (3) in almost quantitative yield with methyl chloride evolution. To our knowledge this is the first example of such Hilbert‐Johnson preparation of dipyridopyrazine‐diones. Recrystallization of 3 from the hydrochloric acid yielded 6,12‐dihydro‐2,8‐dihydroxy‐1,3,7,9‐tetramethyl‐dipyrido[1,2‐a:1′,2′‐d]pyrazinediylium dichloride (4) , neutralization of which gave back the pyrazine‐2,8‐dione 3. The molecular structures of both compounds 3 and 4 have been unambiguously confirmed by single crystal X‐ray structure analysis.  相似文献   

17.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

18.
The novel 6‐ethyl‐4‐hydroxy‐2,5‐dioxo‐5,6‐dihydro‐2H‐pyrano[3,2‐c]quinoline‐3‐carboxaldehyde ( 2 ) was efficiently synthesized from Vilsmeier–Haack formylation of 3‐(1‐ethy1‐4‐hydroxy‐2‐oxo‐(1H)‐quinolin‐3‐yl)‐3‐oxopropanoic acid ( 1 ). The aldehyde 2 was allowed to react with some nitrogen nucleophiles producing a variety of hydrazones 3 – 7 . Reaction of aldehyde 2 with hydrazine hydrate and hydroxylamine hydrochloride afforded pyrazole and isoxazole annulated pyrano[3,2‐c]quinoline‐2,5(6H)‐dione, respectively. The reactivity of aldehyde 2 was examined toward some active methylene nitrile, namely, malononitrile, ethyl cyanoacetate, and cyanoacetamide leading to 2‐iminopyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines 10 – 12 , respectively. Also, some novel pyrazolo[4″,3″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 13 , 14 ) and thiazolo[5″,4″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 15 , 16 ) were synthesized. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

19.
The reaction of thionyl chloride with the semicarbazone 2 gave 4,5‐dihydro‐6,9‐dihydroxynaphtho‐[1,2‐d][1,2,3]thiadiazole ( 3 ) instead of 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]thiadiazole ( 4 ). Selenium dioxide oxidation of compound 2 gave 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 5 ). Oxidation of compound 5 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone afforded 6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 6 ).  相似文献   

20.
Aldol condensation of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij ]quinoline‐1,2‐dione with aryl methyl ketones generates 3‐(aroylmethylidene)oxindoles, which react with hydrazine to generate tricyclic spiro[3H‐pyrazole‐3,3′‐oxindoles].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号