首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclization mechanism for the title compound ( 2 ) reacting with one‐carbon fragment reagents or nitrous acid to afford heterobicyclic compounds 6‐amino‐3‐substituted‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐ones ( 3a~d ) or 6‐amino‐1,2,3,4‐tetrazolo[5,1‐f][1,2,4]triazin‐8(7H)‐one ( 4 ), respectively, is explored in this paper. When 3‐amino‐2‐benzyl‐6‐hydrazino‐1,2,4‐triazin‐5(2H)‐one ( 10 ), the N‐2 benzylated derivative of 2 , is treated under the same conditions, ring cyclization does not occur; instead, 3‐amino‐2‐benzyl‐6‐substituted‐1,2,4‐triazin‐5(2H)‐ones ( 11,12,14 ) and 2‐N‐(2‐amino‐1‐benzyl‐4‐oxo‐1,2,4‐triazin‐5‐yl)semicarbazide ( 13 ) are formed. Alternatively, when 3‐amino‐6‐hydrazino‐2‐[(2‐hydroxyethoxy)methyl]‐1,2,4‐triazin‐5(2H)‐one ( 16 ), a compound bearing the 2‐[(2‐hydroxyethoxy)methyl] side‐chain at N‐2 of 2 by an N? C? O bond, reacts with glacial acetic acid or nitrous acid, the side‐chain is cleaved through acidolysis to affford the ring‐closed compound 6‐amino‐3‐methyl‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐one ( 3b ) or compound 4 , respectively. From these results, we suggest a cyclization mechanism that the ring cyclization is dependent on the aromatization of the 1,2,4‐triazine ring, which influence the reactivity and reaction behavior of the π‐deficient 1,2,4‐triazine.  相似文献   

2.
The title structures, both C10H10N4O, are substitutional isomers. The N—N bond lengths are longer and the C=N bond lengths are shorter by ca 0.025 Å than the respective average values in the C=N—N=C group of asymmetric triazines; the assessed respective bond orders are 1.3 and 1.7. There are N—H⋯O and N—H⋯N hydrogen bonds in both structures, with 4‐­amino‐3‐methyl‐6‐phenyl‐1,2,4‐triazin‐5(4H)‐one containing a rare bifurcated N—H⋯N,N hydrogen bond. The structures differ in their mol­ecular stacking and the hydrogen‐bonding patterns.  相似文献   

3.
The crystal structure of the title compound, C13H15N3O3·C3H7NO, was determined as part of a larger project focusing on creatinine derivatives as potential pharmaceuticals. The molecule is essentially planar, in part because of intramolecular hydrogen bonding. Inversion‐related pairs of molecules result from intermolecular hydrogen bonding. The π systems of 2‐amino‐5‐(3,4‐dimethoxybenzylidene)‐1‐methylimidazol‐4(5H)‐one and an inversion‐related molecule overlap slightly, indicating a small amount of π–π stacking. Bond lengths, angles and torsion angles are consistent with similar structures, except in the imidazolone ring near the doubly bonded C atom, where significant differences occur.  相似文献   

4.
The reaction of 3‐amino‐1,2,4‐triazole ( 1 ) with N‐arylmaleimides leads to azolopyrimidines 4 and 5 . The 2‐aminobenzimidazole ( 2 ) in the reaction with 3 gives the pyrimidobenzimidazoles 6 . In similar conditions, the reaction of amine 2 with maleic anhydride ( 7 ) leads to formation of 2‐oxo‐1,2,3,4‐tetrahydropyrimido[1,2‐a]benzimidazole‐4‐carboxylic acid ( 8 ). The structures of 4 , 5 , 6 , and 8 were proved by X‐Ray and NOE NMR measurements. J. Heterocyclic Chem., (2011)  相似文献   

5.
The molecular dimensions of both 2‐amino‐6‐(N‐methylanilino)pyrimidin‐4(3H)‐one, C11H12N4O, (I), and 2‐amino‐6‐(N‐methylanilino)‐5‐nitropyrimidin‐4(3H)‐one, C11H11N5O3, (II), are consistent with considerable polarization of the molecular–electronic structures. The molecules of (I) are linked into a three‐dimensional framework by a combination of one N—H...N hydrogen bond, two independent N—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (II) are linked into ribbons containing three types of edge‐fused ring by the combination of two independent three‐centre N—H...(O)2 hydrogen bonds.  相似文献   

6.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

7.
In the crystal structure of 6‐phenyl‐3‐thioxo‐2,3,4,5‐tetrahydro‐1,2,4‐triazin‐5‐one, C9H7N3OS, (I), the 1,2,4‐triazine moieties are connected by face‐to‐face contacts through two kinds of double hydrogen bonds (N—H...O and N—H...S), which form planar ribbons along the a axis. The ribbons are crosslinked through C—H...π interactions between the phenyl rings. The molecular structures of two regioisomeric compounds, namely 6‐phenyl‐2,3‐dihydro‐7H‐1,3‐thiazolo[3,2‐b][1,2,4]triazin‐7‐one, C11H9N3OS, (II), and 3‐phenyl‐6,7‐dihydro‐4H‐1,3‐thiazolo[2,3‐c][1,2,4]triazin‐4‐one, C11H9N3OS, (III), which were prepared by the condensation reaction of (I) with 1,2‐dibromoethane, have been characterized by X‐ray crystallography and spectroscopic studies. The crystal structures of (II) and (III) both show two crystallographically independent molecules. While the two compounds are isomers, the unit‐cell parameters and crystal packing are quite different and (II) has a chiral crystal structure.  相似文献   

8.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

9.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

10.
11.
12.
The article describes unusual [5 + 1]‐cyclocondensations of dimethyl acetylenedicarboxylate (DMAD), in which this reagent uncharacteristically acts as a 1,1‐biselelectrophilic agent. Reactions of DMAD with 1,5‐bisnucleophilic 3‐(2‐aminophenyl)‐6‐R1‐1,2,4‐triazin‐5(2H)‐ones yielded triazinoquinazoline‐derived diesters. The latter was shown to react with nucleophiles: hydrazine cleaved the pyrimidine ring of the diesters to give anilines, while ester hydrolysis furnished corresponding carboxylic acids.  相似文献   

13.
The title compound, C10H9NO2Se, crystallizes as flat mol­ecules linked by selenium–oxy­gen interactions [Se?O = 3.189 (4) Å] into a linear chain along the a axis of the triclinic cell. The bond dimensions that are derived from ab initio geometry optimization calculations are similar to those determined from the diffraction measurements.  相似文献   

14.
In order to study the preferred hydrogen‐bonding pattern of 6‐amino‐2‐thiouracil, C4H5N3OS, (I), crystallization experiments yielded five different pseudopolymorphs of (I), namely the dimethylformamide disolvate, C4H5N3OS·2C3H7NO, (Ia), the dimethylacetamide monosolvate, C4H5N3OS·C4H9NO, (Ib), the dimethylacetamide sesquisolvate, C4H5N3OS·1.5C4H9NO, (Ic), and two different 1‐methylpyrrolidin‐2‐one sesquisolvates, C4H5N3OS·1.5C5H9NO, (Id) and (Ie). All structures contain R21(6) N—H...O hydrogen‐bond motifs. In the latter four structures, additional R22(8) N—H...O hydrogen‐bond motifs are present stabilizing homodimers of (I). No type of hydrogen bond other than N—H...O is observed. According to a search of the Cambridge Structural Database, most 2‐thiouracil derivatives form homodimers stabilized by an R22(8) hydrogen‐bonding pattern, with (i) only N—H...O, (ii) only N—H...S or (iii) alternating pairs of N—H...O and N—H...S hydrogen bonds.  相似文献   

15.
The title compounds, C10H12N4, (I), and C9H10N4, (II), have been synthesized and characterized both spectroscopically and structurally. The dihedral angles between the triazole and benzene ring planes are 26.59 (9) and 42.34 (2)°, respectively. In (I), mol­ecules are linked principally by N—H⋯N hydrogen bonds involving the amino NH2 group and a triazole N atom, forming R44(20) and R24(10) rings which link to give a three‐dimensional network of mol­ecules. The hydrogen bonding is supported by two different C—H⋯π inter­actions from the tolyl ring to either a triazole ring or a tolyl ring in neighboring mol­ecules. In (II), inter­molecular hydrogen bonds and C—H⋯π inter­actions produce R34(15) and R44(21) rings.  相似文献   

16.
The structures of the main products resulting from photocyclodimerization of the title compound 2 and of other 3‐methyl‐substituted ‘oxacyclohex‐2‐en‐1‐ones’ (=dihydropyranones) were determined by X‐ray crystallography. In connection, the 13C‐NMR chemical shifts of the cyclobutane C‐atoms of these dimers allow a clear differentiation between head‐to‐head and head‐to‐tail regioisomers, all structurally related to those of isophorone ( 1 ).  相似文献   

17.
The paper describes synthesis and antituberculosis activity of α‐[5‐(5‐amino‐1,3,4‐thiadiazol‐2‐yl)‐imidazol‐2‐ylthio]acetic acids ( 5a,b ). The compounds were tested against Mycobacterium tuberculosis strain H37Rv in comparison to rifampicin. Compounds exhibited low activity (MIC ≤ 6.25 μg/ml, % inhibition ≥ 24).  相似文献   

18.
2‐[(Disubstituted‐methylene)‐hydrazino] benzoic acid phenacylesters 2a‐2d , prepared from anthranilic acid phenacylester 1 , were unsuccesfully tried as starting materials for the synthesis of N‐amino‐3‐hydroxy‐2‐phenyl‐4(1H)‐quinolinone 8 . The desired compound 8 was prepared by cyclization of N‐acetyl as well as N‐benzoyl‐hydrazinobenzoic acid phenacylester 6a or 6b in polyphosphoric acid to afford N‐acylamino‐3‐hydroxy‐2‐phenyl‐4(1H)‐quinolinone 7a or 7b , respectively. Surprisingly, the acyl group was resistant to attack by both hydrochloric acid as well as sodium hydroxide solution. It could be removed by boiling the compounds 7a or 7b respectively in 50% sulphuric acid to afford the the target compound 8 .  相似文献   

19.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

20.
2‐Methyl‐3‐amino‐5‐phenyl‐7‐N , N‐dimethylamino phenazinium chloride salts were synthesized in better yields via the cyclization of 4‐amino‐N ,N‐dimethylaniline with toluidine derivatives and aminobenzene under the oxidation of sodium bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号