首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

2.
The title compounds, 7‐aryl‐5,6‐dihydro‐14‐aza[1]benzopyrano[3,4‐b]phenanthren‐8H‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been synthesized by reacting various 4‐hydroxy coumarins 1a , 1b , 1c with 2‐arylidene‐1‐tetralones 2a , 2b , 2c , 2d in the presence of ammonium acetate and acetic acid under Krohnke's reaction condition. The structures of all the synthesized compounds were supported by analytical, IR, 1H‐NMR, and 13C‐NMR data. All the synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been screened for their antibacterial activities against Escherichia coli (Gram ?ve bacteria), Bacillus subtilis (Gram +ve bacteria), and antifungal activity against Candida albicans (Fungi). J. Heterocyclic Chem., (2011).  相似文献   

3.
Cyclopropanecarboxaldehyde ( 1 a ), cyclopropyl methyl ketone ( 1 b ), and cyclopropyl phenyl ketone ( 1 c ) were reacted with [Ni(cod)2] (cod=1,5‐cyclooctadiene) and PBu3 at 100 °C to give η2‐enonenickel complexes ( 2 a – c ). In the presence of PCy3 (Cy=cyclohexyl), 1 a and 1 b reacted with [Ni(cod)2] to give the corresponding μ‐η21‐enonenickel complexes ( 3 a , 3 b ). However, the reaction of 1 c under the same reaction conditions gave a mixture of 3 c and cyclopentane derivatives ( 4 c , 4 c′ ), that is, a [3+2] cycloaddition product of 1 c with (E)‐1‐phenylbut‐2‐en‐1‐one, an isomer of 1 c . In the presence of a catalytic amount of [Ni(cod)2] and PCy3, [3+2] homo‐cycloaddition proceeded to give a mixture of 4 c (76 %) and 4 c′ (17 %). At room temperature, a possible intermediate, 6 c , was observed and isolated by reprecipitation at ?20 °C. In the presence of 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr), both 1 a and 1 c rapidly underwent oxidative addition to nickel(0) to give the corresponding six‐membered oxa‐nickelacycles ( 6 ai , 6 ci ). On the other hand, 1 b reacted with nickel(0) to give the corresponding μ‐η21‐enonenickel complex ( 3 bi ). The molecular structures of 6 ai and 6 ci were confirmed by X‐ray crystallography. The molecular structure of 6 ai shows a dimeric η1‐nickelenolate structure. However, the molecular structure of 6 ci shows a monomeric η1‐nickelenolate structure, and the nickel(II) 14‐electron center is regarded as having “an unusual T‐shaped planar” coordination geometry. The insertion of enones into monomeric η1‐nickelenolate complexes 6 c and 6 ci occurred at room temperature to generate η3‐oxa‐allylnickel complexes ( 8 , 9 ), whereas insertion into dimeric η1‐nickelenolate complex 6 ai did not take place. The diastereoselectivity of the insertion of an enone into 6 c having PCy3 as a ligand differs from that into 6 ci having IPr as a ligand. In addition, the stereochemistry of η3‐oxa‐allylnickel complexes having IPr as a ligand is retained during reductive elimination to yield the corresponding [3+2] cycloaddition product, which is consistent with the diastereoselectivity observed in Ni0/IPr‐catalyzed [3+2] cycloaddition reactions of cyclopropyl ketones with enones. In contrast, reductive elimination from the η3‐oxa‐allylnickel having PCy3 as a ligand proceeds with inversion of stereochemistry. This is probably due to rapid isomerization between syn and anti isomers prior to reductive elimination.  相似文献   

4.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

5.
Five novel pyrazole‐coupled glucosides, 1,5‐diaryl‐1H‐pyrazol‐3‐yl 2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosides 5a – 5e , were synthesized by the phase‐transfer catalytic reaction of 1,5‐diaryl‐1H‐pyrazol‐3‐ols 4a – 4e with acetobromo‐α‐D ‐glucose in H2O/CHCl3 under alkaline conditions, using Bu4N+Br? as catalyst. Then, glucosides 5a – 5c were deacetylated in a solution of Na2CO3/MeOH to yield the 1,5‐diaryl‐3‐(β‐D ‐glucopyranosyloxy)‐1H‐pyrazoles 6a – 6c . Their structures were characterized by 1H,1H‐COSY, 1H‐, 13C‐, and 19F‐NMR spectroscopy, as well as elemental analysis. The structures of 5d and 6c were also determined by single‐crystal X‐ray diffraction analysis. A preliminary in vitro bioassay indicated that compounds 4e and 5d exhibited excellent‐to‐medium fungicidal activity against Sclerotinia sclerotiorum at the dosage of 10 μg/ml.  相似文献   

6.
Some new target products 5‐aryl‐4,5‐dihydro‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐(4‐phenylthiazol‐2‐yl)pyrazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j have been synthesized by reaction of 2‐bromo‐1‐phenylethanone and compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j which were prepared from the combination of thiosemicarbazide and (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j . All the structures were established by MS, IR, CHN, and 1H NMR spectra data. Synthesis of structure diversity is applied. J. Heterocyclic Chem., (2011).  相似文献   

7.
The addition of neutral (L = py, NEt3, NHEt2, NH2tBu) and anionic Lewis bases (X = OH, Br, N3, Me, NHBu , NHtBu, [FeCp(CO)2]) to aza‐closo‐dodecaboranes RNB11H11 ( 1 ) or to derivatives thereof with boron bound non‐hydrogen ligands yields nido‐clusters RNB11H11L or [RNB11H11X] or derivatives thereof, respectively, the non‐planar pentagonal aperture N—B4—B9—B8—B5 of which hosts a B8—B9 hydrogen bridge. The base is either bound to B8 ( 3 )or B4 ( 5 )or B2( 7 ). The structures of these adducts are concluded from 1H and 11B NMR including 2D‐NMR spectra, and in the case of MeNB11H11(NHEt2) (type 3 ) also by a crystal structure analysis. With two of the adducts MeNB11H11L (L = py, NHEt2), isomers of the type 3 , 5 , and 7 , and with two of the adducts, MeNB11H11(NH2tBu) and {MeNB11H11[FeCp(CO)2]}, isomers of the type 3 and 7 could be identified. The position of boron‐bound ligands during the addition of bases to 1 shows, that only vertices of the ortho‐belt of 1 are involved in the opening process. A mechanism is made plausible that starts by the attack of the base at B2 of 1 and opening of the N‐B2 bond, denoted as a [3c, 1c]‐collocation, to give 2 with an endo‐H atom, whose migration into an adjacent bridge position and opening of a second B—N bond, denoted as a [3c, 2c]‐translocation, gives 3 ; this isomer can be transformed into 7 by a sequence of [3c, 2c]‐translocations via the isomers 4 , 5 , and 6 . The chiral type 3 species MeNB11H11L with L = NHEt2, NH2tBu undergo a rapid enantiomerization, for whose mechanism the exchange of the bridging and the amine‐H atom has been made plausible.  相似文献   

8.
3‐(2‐Aryl‐2,3‐dihydro‐benzo[b][1,4]thiazepin‐4‐yl)chromen‐2‐ones ( 2a, e, f ) and (Z)‐3‐(2,3‐dihydro‐2‐arylbenzo[b][1,4]thiazepin‐4(5H)‐ylidene)chroman‐2‐ones ( 3a‐f ) have been synthesized by the reaction of 3‐aryl‐1‐(3‐coumarinyl)propen‐1‐ones ( 1a‐f ) with 2‐aminothiophenol in a hot mixture of toluene and acetic acid. Structures of all new compounds and their complete 1H and 13C assignments were achieved applying different one‐ and two‐dimensional nmr experiments in combination with various spectroscopic techniques.  相似文献   

9.
Structures of cyclic 2‐(3‐oxo‐3‐phenylpropyl)‐substituted 1,3‐diketones 4a – c were determined by 17O‐NMR spectroscopy and X‐ray crystallography. In CDCl3 solution, compounds 4a – c form an eight‐membered‐ring with intramolecular H‐bonding between the enolic OH and the carbonyl O(11)‐atom of the phenylpropyl group, as demonstrated by increased shielding of specifically labeled 4a – c in the 17O‐NMR spectra (Δδ(17O(11))=36 ppm). In solid state, intermolecular H‐bonding was observed instead of intramolecular H‐bonding, as evidenced by the X‐ray crystal‐structure analysis of compound 4b . Crystals of compound 4b at 293 K are monoclinic with a=11.7927 (12) Å, b=13.6230 (14) Å, c=9.8900 (10) Å, β=107.192 (2)°, and the space group is P21/c with Z=4 (refinement to R=0.0557 on 2154 independent reflections).  相似文献   

10.
A straightforward method has been developed for the synthesis of 1,2,4‐triazol‐3‐one 3 and 1,2,4‐triazoles 6a , 6b , 6c , 6d starting from N1‐substituted‐N1‐tosylhydrazonates 2 and hydrazine monohydrate. This methodology affords a number of 1,2,4‐triazol‐3‐one 3 and 1,2,4‐triazoles 6a , 6b , 6c , 6d in reasonable yields. The structures of all new compounds were elucidated using infrared, 1H and 13C NMR, high‐resolution mass spectrometry, elemental analysis, and the X‐ray crystallography (for compounds 3 and 6a ). Some of the newly synthesized compounds were screened for their antibacterial activity.  相似文献   

11.
The interactions of a series of platinum(II) Schiff base complexes with c‐myc G‐quadruplex DNA were studied. Complex [PtL 1a ] ( 1 a ; H2L 1a =N,N′‐bis(salicylidene)‐4,5‐methoxy‐1,2‐phenylenediamine) can moderately inhibit c‐myc gene promoter activity in a cell‐free system through stabilizing the G‐quadruplex structure and can inhibit c‐myc oncogene expression in cultured cells. The interaction between 1 a and G‐quadruplex DNA has been examined by 1H NMR spectroscopy. By using computer‐aided structure‐based drug design for hit‐to‐lead optimization, an in silico G‐quadruplex DNA model has been constructed for docking‐based virtual screening to develop new platinum(II) Schiff base complexes with improved inhibitory activities. Complex [PtL 3 ] ( 3 ; H2L 3 = N,N′‐bis{4‐[1‐(2‐propylpiperidine)oxy]salicylidene}‐4,5‐methoxy‐1,2‐phenylenediamine) has been identified with a top score in the virtual screening. This complex was subsequently prepared and experimentally tested in vitro for its ability to stabilize or induce the formation of the c‐myc G‐quadruplex. The inhibitory activity of 3 (IC50=4.4 μM ) is tenfold more than that of 1 a . The interaction between 1 a or 3 with c‐myc G‐quadruplex DNA has been examined by absorption titration, emission titration, molecular modeling, and NMR titration experiments, thus revealing that both 1 a and 3 bind c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3’ terminal face of the G‐quadruplex. Such binding of G‐quadruplex DNA with 3 is accompanied by up to an eightfold increase in the intensity of photoluminescence at λmax=652 nm. Complex 3 also effectively down‐regulated the expression of c‐myc in human hepatocarcinoma cells.  相似文献   

12.
The reaction of 5,7‐diphenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) with α,β‐unsaturated carbonyl compounds 2a‐f led to the formation of the alkylated heterocycles 3a‐f (Figure 1). However, the reaction of 5‐methyl‐7‐phenyl‐4,7‐dihydro‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 5 ) with 2a‐c yielded under the same conditions the triazolo[5,1‐b]quinazolines 6a‐c (Figure 3). In this case, the alkylation is followed by a cyclocondensation. The structure elucidation of the products is based on ir, ms, 1H and 13C nmr measurements and on an X‐ray diffraction study.  相似文献   

13.
14.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

15.
Treatment of 3‐aryl‐2‐thioxo‐1,3‐thiazolidin‐4‐ones 1 with CN? and NCO? effected the ring cleavage providing [(cyanocarbonothioyl)amino]benzenes 4 and arylisothiocyanates 5 , respectively. Similar treatment of 5‐(2‐aryl‐2‐oxoethyl) derivatives 2 afforded 2,4‐bis(2‐aryl‐2‐oxoethylidene)cyclobutane‐1,3‐diones 6 along with each of the preceding products. Treatment of the respective (E,Z)‐5‐(2‐aryl‐2‐oxoethylidene) analogues 3b and 3c with CN? gave 4b and 4c and 2‐(arylcarbonyl)‐2‐methoxy‐4‐oxopentanedinitriles 7b and 7c , in addition to 3,6‐bis[2‐(4‐chlorophenyl)‐1‐methoxy‐2‐oxoethylidene]‐1,4‐dithiane‐2,5‐dione 8c , which has been generated from 3c . Reactions of 3c or 3d with NCO? provided 5c or 5d , together with 8c or 8d as pure isomers. In the formation of the MeO products 7 and 8 , the solvent (MeOH) has participated. Structures of these products are based on microanalytical and spectroscopic data. Rationalizations for the above transformations are given.  相似文献   

16.
A series of new N‐Substituted‐N′‐(4,6‐dimethylpyrimidin‐2‐yl)‐thiourea derivatives ( 3a , 3b , 3c , 3d ) and related fused heterocyclic compounds ( 4a , 4b , 4c , 4d ) were synthesized using tetrabutylammonium bromide as phase transfer catalyst (PTC). N‐[(2E)‐5,7‐dimethyl‐2H‐[1,2,4] thiadiazolo [2,3‐a] pyrimidin‐2‐ylidene] derivatives ( 4a , 4b , 4c , 4d ) were prepared by oxidative cyclization of 3a , 3b , 3c , 3d . The structures of these novel compounds were characterized by IR, 1H NMR, 13C NMR, mass spectrometry, and the elemental analysis. The crystal structures were determined from single crystal X‐ray diffraction data. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed higher activity against fungi than bacteria. Compounds 3d and 3a exhibited the greatest antimicrobial activity. J. Heterocyclic Chem., 2011.  相似文献   

17.
3‐Alkyl/aryl‐3‐amino‐1H,3H‐quinoline‐2,4‐diones react with alkyl/aryl isocyanates to give novel 3‐alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones or 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones. In some cases, a mixture of both products was obtained and separated by fractional crystallization. All compounds were characterized by their 1H, 13C, ir and ms data and some of them also by 15N nmr data.  相似文献   

18.
Two series of novel 4‐acyl‐2,5‐disubstituted‐3‐hydroxypyrazoles 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h and 4‐arylcarbonyl‐3‐substitutedisoxazol‐5‐ones 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i were synthesized by the Scotton–Baumann reaction of 2,5‐disubstituted‐2,4‐dihydro‐pyrazol‐3‐ones 1 or 3‐substituted‐4H‐isoxazol‐5‐ones 6 and various acyl chlorides, followed by the Fries rearrangement in the presence of calcium hydroxide and calcium oxide as the catalyst. Their structures were confirmed by IR, 1H NMR, mass spectroscopy, and elemental analyses. 1H NMR indicated that compounds 3 existed in enol forms and compounds 7 in keto configurations. The results of preliminary bioassays showed that some of the title compounds 3 and 7 exhibited moderate to good herbicidal activities against Brassica campestris L. at the concentration of 100 mg/L. Isoxazole compounds 7 showed better herbicidal activity against B. campestris L. than pyrazole compounds 3 did at the concentration of 100 mg/L. Moreover, most of the isoxazole compounds displayed higher herbicidal activity against B. campestris L. than Echinochloa crus‐galli. However, these compounds showed weak herbicidal activities at the concentration of 10 mg/L.  相似文献   

19.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

20.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号