首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose and study a model of a hybrid ratio-dependent three species food chain, which is constituted by a hybrid type subsystem of prey and middle-predator and a middle-top predators’ subsystem with Holling type-II functional response. We investigate the persistence and Hopf bifurcation of the system. Computer simulations are carried out to explain the mathematical conclusions. The chaotic attractor is obtained for suitable choice of parametric values.  相似文献   

2.
In this paper, a three-species food chain model with Holling type IV and Beddington–DeAngelis functional responses is formulated. Numerical simulations show that this system can generate chaos for some parameter values. But the mechanism behind chaos is still unclear only through numerical simulations. Then, using the topological horseshoe theories and Conley–Moser conditions, we present a computer-assisted analysis to show the chaoticity of this system in the topological sense, that is, it has positive topological entropy. We prove that the Poincaré map of this model possesses a closed uniformly hyperbolic chaotic invariant set, and it is topologically conjugate to a 2-shift map. At last, we consider the impact of fear on this three-species model. It is an important factor in controlling chaos in biological models, which has been validated in other models.   相似文献   

3.
This paper is concerned with bifurcations of equilibria and the chaotic dynamics of a food web containing a bottom prey X, two competing predators Y and Z on X, and a super-predator W only on Y. Conditions for the existence of all equilibria and the stability properties of most equilibria are derived. A two-dimensional bifurcation diagram with the aid of a numerical method for identifying bifurcation curves is constructed to show the bifurcations of equilibria. We prove that the dynamical system possesses a line segment of degenerate steady states for the parameter values on a bifurcation line in the bifurcation diagram. Numerical simulations show that these degenerate steady states can help to switch the stabilities between two far away equilibria when the system crosses this bifurcation line. Some observations concerned with chaotic dynamics are also made via numerical simulations. Different routes to chaos are found in the system. Relevant calculations of Lyapunov exponents and power spectra are included to support the chaotic properties.  相似文献   

4.
Necessity to find a non-chemical method of disease control is being increasingly felt due to its eco-friendly nature. In this paper the role of alternative food as a disease controller in a disease induced predator–prey system is studied. Stability criteria and the persistence conditions for the system are derived. Bifurcation analysis is done with respect to rate of infection. The main goal of this study is to show the non-trivial consequences of providing alternative food in a disease induced predator–prey system. Numerical simulation results illustrate that there exists a critical infection rate above which disease free system cannot be reached in absence of alternative food whereas supply of suitable alternative food makes the system disease free up to certain infection level. We have computed the disease free regions in various parametric planes. This study is aimed to introduce a new non-chemical method for controlling disease in a predator–prey system.  相似文献   

5.
This study aims to analyze the dynamic behavior of bevel-geared rotor system supported on a thrust bearing and journal bearings under nonlinear suspension. The dynamic orbits of the system are observed using bifurcation diagrams plotted with both the dimensionless unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents, and fractal dimensions of the gear-bearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, and chaotic behaviors. The results presented in this study provide an understanding of the operating conditions under which undesirable dynamic motion takes place in a gear-bearing system and therefore serves as a useful source of reference for engineers in designing and controlling such systems.  相似文献   

6.
Impulsive perturbations of a three-trophic prey-dependent food chain system   总被引:1,自引:0,他引:1  
The dynamics of an impulsively controlled three-trophic food chain system with general nonlinear functional responses for the intermediate consumer and the top predator are analyzed using the Floquet theory and comparison techniques. It is assumed that the impulsive controls act in a periodic fashion, the constant impulse (the biological control) and the proportional impulses (the chemical controls) acting with the same period, but not simultaneously. Sufficient conditions for the global stability of resource and intermediate consumer-free periodic solution and of the intermediate consumer-free periodic solution are established, the latter corresponding to the success of the integrated pest management strategy from which our food chain system arises. In this regard, it is seen that, theoretically speaking, the control strategy can be always made to succeed globally if proper pesticides are employed, while as far as the biological control is concerned, its global effectiveness can also be reached provided that the top predator is voracious enough or the (constant) number of top predators released each time is large enough or the release period is small enough. Some situations which lead to chaotic behavior of the system are also investigated by means of numerical simulations.  相似文献   

7.
We investigate the qualitative behavior of a host‐parasitoid model with a strong Allee effect on the host. More precisely, we discuss the boundedness, existence and uniqueness of positive equilibrium, local asymptotic stability of positive equilibrium and existence of Neimark–Sacker bifurcation for the given system by using bifurcation theory. In order to control Neimark–Sacker bifurcation, we apply pole‐placement technique that is a modification of OGY method. Moreover, the hybrid control methodology is implemented in order to control Neimark–Sacker bifurcation. Numerical simulations are provided to illustrate theoretical discussion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the problem of chaos and hyper-chaos control, and proposes a simple adaptive feedback control method for chaos control under a reasonable assumption. In comparison with previous methods, the present control technique is simple both in the form of the controller and its application. Several illustrative examples with numerical simulations are studied by using the results obtained in this paper. Study of examples shows that our control method works very well in chaos control.  相似文献   

9.
This paper systematically studies a hybrid predator–prey economic model, which is formulated by differential-difference-algebraic equations. It shows that this model exhibits two bifurcation phenomena at the intersampling instants. One is saddle–node bifurcation, and the other is singular induced bifurcation which indicates that economic profit may bring impulse at some critical value, i.e., rapid expansion of biological population in terms of ecological implications. On the other hand, for the sampling instants, the system undergoes Neimark–Sacker bifurcation at a critical value of economic profit, i.e., the increase of economic profit destabilizes the system and generates a unique closed invariant curve. Moreover, the state feedback controller is designed so that singular induced bifurcation and Neimark–Sacker bifurcation can be eliminated and the population can be driven to steady states by adjusting harvesting costs and the economic profit. At the same time, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here.  相似文献   

10.
11.
A model is proposed to understand the dynamics in a food chain (one predator‐two prey). Unlike many approaches, we consider mutualism (for defense against predators) between the two groups of prey. We investigate the conditions for coexistence and exclusion. Unlike Elettreby's (2009) results, we show that prey can coexist in the absence of predators (as expected since there is no competition between prey). We also show the existence of Hopf bifurcation and limit cycle in the model, and numerically present bifurcation diagrams in terms of mutualism and harvesting. When the harvest is practiced for profit making, we provide the threshold effort value that determines the profitability of the harvest. We show that there is zero profit when the constant effort is applied. Below (resp. above) , there will always be gain (resp. loss). In the case of gain, we provide the optimal effort and optimal steady states that produce maximum profit and ensure coexistence. Recommendations for resource managers As a result of our investigation, we bring the following to the attention of management:
  • 1. In the absence of predators, different groups of prey can coexist if they mutually help each other (no competition among them).
  • 2. There is a maximal effort to invest in order to gain profit from the harvest. Above , the investment will result in a loss.
  • 3. In the case of profit from harvest, policy makers should recommend the optimal effort to be applied and the optimal stock to harvest. This will guarantee maximum profit while ensuring sustainability of all species.
  相似文献   

12.
In this paper, a biochemical model with the impulsive perturbations is considered. By using the Floquet theorem, we find the boundary-periodic solution is asymptotically stable if the impulsive period is larger than a critical value. On the contrary, it is unstable if the impulsive period is less than the critical value. The problem of finding nontrivial periodic solutions is reduced to showing the existence of the nontrivial fixed points for the associated stroboscopic mapping of time snapshot equal to the common period of input. It is then shown that once a threshold condition is reached, a stable nontrivial periodic solution emerges via a supercritical bifurcation. Furthermore, influences of the impulsive input on the inherent oscillations are studied numerically, which shows the rich dynamics in the positive octant.  相似文献   

13.
In this work, stability analysis of the fractional-order Newton-Leipnik system is studied by using the fractional Routh-Hurwitz criteria. The fractional Routh-Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh-Hurwitz conditions and using specific choice of linear feedback controllers, it is shown that the Newton-Leipnik system is controlled to its equilibrium points. Moreover, the theoretical basis of hybird projective synchronization of commensurate and incommensurate fractional-order Newton-Leipnik systems is investigated. Based on the stability theorems of fractional-order systems, the controllers for hybrid projective synchroniztion are derived. Numerical results show the effectiveness of the theoretical analysis.  相似文献   

14.
In this paper, we present an improved wheelset motion model with two degrees of freedom and study the dynamic behaviors of the system including the symmetry, the existence and uniqueness of the solution, continuous dependence on initial conditions, and Hopf bifurcation. The dynamic characteristics of the wheelset motion system under a nonholonomic constraint are investigated. These results generalize and improve some known results about the wheelset motion system. Meanwhile, based on multiple equilibrium analysis, calculation of Lyapunov exponents and Poincaré section, the chaotic behaviors of the wheelset system are discussed, which indicates that there are more complex dynamic behaviors in the railway wheelset system with higher order terms of Taylor series of trigonometric functions. This paper has also realized the chaos control and bifurcation control for the wheelset motion system by adaptive feedback control method and linear feedback control. The results show that the chaotic wheelset system and bifurcation wheelset system are all well controlled, whether by controlling the yaw angle and the lateral displacement or only by controlling the yaw angle. Numerical simulations are carried out to further verify theoretical analyses.  相似文献   

15.
The dynamics of a Leslie-Gower prey-predator system with ratio-dependent Holling IV functional response and constant harvesting rate of prey are taken into account. The results developed in this article reveal far richer dynamics compared with the system without harvesting. We first make qualitative and bifurcation analysis of the system without harvesting and show that the system has a weak focus of multiplicity at most 2, at which a Hopf bifurcation occurs. However, the system with harvesting has four nonhyperbolic equilibria for some parameter values, such as two saddle-node, a cusp, and a weak focus of multiplicity at most 4, and exhibits two saddle-node bifurcations, a Bogdanov-Takens bifurcation of codimension 2, and a Hopf bifurcation. It reveals that there exist some critical harvesting values such that the species are in danger of extinction when the harvesting rate is greater than the critical values, which indicates that the dynamics of the system are sensitive to the constant prey harvesting. Moreover, numerical simulations are presented to illustrate our theoretical results.  相似文献   

16.
This paper studies a food chain chemostat model with Monod response functions, which is perturbed by white noise. Firstly, we prove the existence and uniqueness of the global positive solution. Then sufficient conditions for the existence of a unique ergodic stationary distribution are established by constructing suitable Lyapunov functions. Moreover, we consider the extinction of microbes in two cases. In the first case, both the predator and prey species are extinct. In the second case, only the predator species is extinct, and the prey species survives. Finally, numerical simulations are carried out to illustrate the theoretical results.  相似文献   

17.
The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the applications in fishery management and biological conservation of prey predator species.  相似文献   

18.
In this paper, we focus on a food chain chemostat model with general response functions, perturbed by white noise. Under appropriate assumptions, we establish sufficient conditions for the existence of a unique ergodic stationary distribution by using stochastic Lyapunov analysis method. Our main effort is to construct the suitable Lyapunov function.  相似文献   

19.
In earlier literature, a version of a classical three‐species food chain model, with modified Holling type IV functional response, is proposed. Results on the global boundedness of solutions to the model system under certain parametric restrictions are derived, and chaotic dynamics is shown. We prove that in fact the model possesses explosive instability, and solutions can explode/blow up in finite time, for certain initial conditions, even under the parametric restrictions of the literature. Furthermore, we derive the Hopf bifurcation criterion, route to chaos, and Turing bifurcation in case of the spatially explicit model. Lastly, we propose, analyze, and simulate a version of the model, incorporating gestation effect, via an appropriate time delay. The delayed model is shown to possess globally bounded solutions, for any initial condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we consider a closed-loop supply chain (CLSC) with product recovery, which is composed of one manufacturer and one retailer. The retailer is in charge of recollecting and the manufacturer is responsible for product recovery. The system can be regarded as a coupling dynamics of the forward and reverse supply chain. Under different decision criteria, two noncooperative game models: Stackelberg game model and peer-to-peer game model are developed. The dynamic phenomena, such as the bifurcation, chaos and sensitivity to initial values are analyzed through bifurcation diagrams and the largest Lyapunov exponent (LLE). The influences of decision parameters on the complex nonlinear dynamics behaviors of the two models are further analyzed by comparing parameter basin plots, and the results show that with the improvement of retailer’s competitive position, the CLSC system will be more easier to enter into chaos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号