首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper two families of zero-finding iterative methods for solving nonlinear equations f(x)=0 are presented. The key idea to derive them is to solve an initial value problem applying Obreshkov-like techniques. More explicitly, Obreshkov’s methods have been used to numerically solve an initial value problem that involves the inverse of the function f that defines the equation. Carrying out this procedure, several methods with different orders of local convergence have been obtained. An analysis of the efficiency of these methods is given. Finally we introduce the concept of extrapolated computational order of convergence with the aim of numerically test the given methods. A procedure for the implementation of an iterative method with an adaptive multi-precision arithmetic is also presented.  相似文献   

2.
Two families of zero-finding iterative methods for nonlinear equations are presented. We derive them solving an initial value problem using Adams-like multistep techniques. Namely, Adams methods have been used to solve the problem that consists in a differential equation in what appears the inverse function of the one which zero will be computed and the condition given by the value attained by it at the initial approximation. Performing this procedure several methods of different local orders of convergence have been obtained.  相似文献   

3.
A zero-finding technique in which the order of convergence is improved and nonlinear equations are solved more efficiently than they are solved by traditional iterative methods is derived. Composing a modified Chebyshev-Halley method with a variant of this method that just introduces one evaluation of the function the iterative methods presented are obtained. By carrying out this procedure the output numerical results show that the new methods compete in both order and efficiency with the modified Chebyshev-Halley methods.  相似文献   

4.
5.
A few variants of the secant method for solving nonlinear equations are analyzed and studied. In order to compute the local order of convergence of these iterative methods a development of the inverse operator of the first order divided differences of a function of several variables in two points is presented using a direct symbolic computation. The computational efficiency and the approximated computational order of convergence are introduced and computed choosing the most efficient method among the presented ones. Furthermore, we give a technique in order to estimate the computational cost of any iterative method, and this measure allows us to choose the most efficient among them.  相似文献   

6.
We present the geometric construction of some classical iterative methods that have global convergence and “infinite” speed of convergence when they are applied to solve certain nonlinear equations f(t)=0. In particular, for nonlinear equations with the degree of logarithmic convexity of f, Lf(t)=f(t)f?(t)/f(t)2, is constant, a family of Newton-type iterative methods of high orders of convergence is constructed. We see that this family of iterations includes the classical iterative methods. The convergence of the family is studied in the real line and the complex plane, and domains of semilocal and global convergence are located.  相似文献   

7.
The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.  相似文献   

8.
There exists a real competition between authors to construct improved iterative methods for solving nonlinear equations. In this paper, by using computer experiment, we study the basins of attraction for some of the iterative methods for solving the equation P(z) = 0, where P:CC is a complex coefficients polynomial, and this allows us to compare their performances (the area of convergence and theirs speed). The beauty fractal pictures generated by these methods are presented too.  相似文献   

9.
In this paper, we present a technique to construct iterative methods to approximate the zeros of a nonlinear equation F(x)=0, where F is a function of several variables. This technique is based on the approximation of the inverse function of F and on the use of a fixed point iteration. Depending on the number of steps considered in the fixed point iteration, or in other words, the number of evaluations of the function F, we obtain some variants of classical iterative processes to solve nonlinear equations. These variants improve the order of convergence of classical methods. Finally, we show some numerical examples, where we use adaptive multi-precision arithmetic in the computation that show a smaller cost.  相似文献   

10.
A variant of Newton's method with accelerated third-order convergence   总被引:22,自引:0,他引:22  
In the given method, we suggest an improvement to the iteration of Newton's method. Derivation of Newton's method involves an indefinite integral of the derivative of the function, and the relevant area is approximated by a rectangle. In the proposed scheme, we approximate this indefinite integral by a trapezoid instead of a rectangle, thereby reducing the error in the approximation. It is shown that the order of convergence of the new method is three, and computed results support this theory. Even though we have shown that the order of convergence is three, in several cases, computational order of convergence is even higher. For most of the functions we tested, the order of convergence in Newton's method was less than two and for our method, it was always close to three.  相似文献   

11.
A family of eighth-order iterative methods with four evaluations for the solution of nonlinear equations is presented. Kung and Traub conjectured that an iteration method without memory based on n evaluations could achieve optimal convergence order 2n-1. The new family of eighth-order methods agrees with the conjecture of Kung-Traub for the case n=4. Therefore this family of methods has efficiency index equal to 1.682. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.  相似文献   

12.
In this paper, three new families of eighth-order iterative methods for solving simple roots of nonlinear equations are developed by using weight function methods. Per iteration these iterative methods require three evaluations of the function and one evaluation of the first derivative. This implies that the efficiency index of the developed methods is 1.682, which is optimal according to Kung and Traub’s conjecture [7] for four function evaluations per iteration. Notice that Bi et al.’s method in [2] and [3] are special cases of the developed families of methods. In this study, several new examples of eighth-order methods with efficiency index 1.682 are provided after the development of each family of methods. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.  相似文献   

13.
Modification of Newton’s method with higher-order convergence is presented. The modification of Newton’s method is based on King’s fourth-order method. The new method requires three-step per iteration. Analysis of convergence demonstrates that the order of convergence is 16. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newton’s method and other methods.  相似文献   

14.
In this paper we present a new efficient sixth-order scheme for nonlinear equations. The method is compared to several members of the family of methods developed by Neta (1979) [B. Neta, A sixth-order family of methods for nonlinear equations, Int. J. Comput. Math. 7 (1979) 157-161]. It is shown that the new method is an improvement over this well known scheme.  相似文献   

15.
We study the dynamics of a higher-order family of iterative methods for solving non-linear equations. We show that these iterative root-finding methods are generally convergent when extracting radicals. We examine the Julia sets of these methods with particular polynomials. The examination takes place in the complex plane.  相似文献   

16.
In a recent paper [N.A. Mir, T. Zaman, Some quadrature based three-step iterative methods for non-linear equations, Appl. Math. Comput. 193 (2007) 366-373], some new three-step iterative methods for non-linear equations have been proposed. In this note, we show that the Algorithm 2.2 and Algorithm 2.3 given by the authors have twelfth-order and ninth-order convergence respectively, not seventh-order one as claimed in their work.  相似文献   

17.
In [A. Melman, Geometry and convergence of Euler's and Halley's methods, SIAM Rev. 39(4) (1997) 728–735] the geometry and global convergence of Euler's and Halley's methods was studied. Now we complete Melman's paper by considering other classical third-order method: Chebyshev's method. By using the geometric interpretation of this method a global convergence theorem is performed. A comparison of the different hypothesis of convergence is also presented.  相似文献   

18.
19.
There are many methods for the solution of a nonlinear algebraic equation. The methods are classified by the order, informational efficiency and efficiency index. Here we consider other criteria, namely the basin of attraction of the method and its dependence on the order. We discuss several methods of various orders and present the basin of attraction for several examples. It can be seen that not all higher order methods were created equal. Newton’s, Halley’s, Murakami’s and Neta-Johnson’s methods are consistently better than the others. In two of the examples Neta’s 16th order scheme was also as good.  相似文献   

20.
A new eighth-order iterative method for solving nonlinear equations   总被引:1,自引:0,他引:1  
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号