首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

2.
In this article, the Exp‐function method is applied to nonlinear Burgers equation and special fifth‐order partial differential equation. Using this method, we obtain exact solutions for these equations. The method is straightforward and concise, and its applications are promising. This method can be used as an alternative to obtain analytical and approximate solutions of different types of nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
The semi-inverse method is adopted to search for a variational principle for an unelectroded piezoelastic beam. A trial variational formulation with energy integral is constructed with an unknown function, which is identified so that the Euler–Lagrange equations are equivalent to the governing equations.  相似文献   

4.
推广Lax-Wendroff多步方法,建立一类新的显式和隐式相结合的多步格式,并以此为基础提出了一类显隐多步-小波-Galerkin方法,可以用来求解依赖时间的偏微分方程.不同于Taylor-Galerkin方法,文中的方案在提高时间离散精度时不包含任何新的高阶导数.由于引入了隐式部分,与传统的多步方法相比该方案有更好的稳定性,适合于求解非线性偏微分方程,理论分析和数值例子都说明了方法的有效性.  相似文献   

5.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this article; one is He's variational iteration method (VIM) and the other is the homotopy-perturbation method (HPM). The VIM is to construct correction functionals using general Lagrange multipliers identified optimally via the variational theory, and the initial approximations can be freely chosen with unknown constants. The HPM deforms a difficult problem into a simple problem which can be easily solved. Nonlinear convective–radiative cooling equation, nonlinear heat equation (porous media equation) and nonlinear heat equation with cubic nonlinearity are used as examples to illustrate the simple solution procedures. Comparison of the applied methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

6.
Hermite approximation is investigated. Some inverse inequalities, imbedding inequalities and approximation results are obtained. A Hermite spectral scheme is constructed for Burgers equation. The stability and convergence of the proposed scheme are proved strictly. The techniques used in this paper are also applicable to other nonlinear problems in unbounded domains.

  相似文献   


7.
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.  相似文献   

8.
An improved variation of the nodal integral method to solve partial differential equations has been developed and implemented. Rather than treating all of the nonlinear terms as the so-called pseudo-source terms (to be approximated), in this modified version of the nodal integral method, by approximating part of the nonlinear terms in terms of the discrete variable(s) that ultimately result at the end of the formulation process, some or all of the nonlinear terms are kept on the left-hand side in the transverse-integrated equations, which are to be solved analytically. Application of the method to solve the Burgers equation leads to exponential variation within the nodes and shows that the resulting scheme has inherent upwinding. Reconstruction of node interior solution—as a function of one independent variable, and averaged in all others—makes it possible to obtain rather accurate solutions even on a fine scale. Results of the numerical analysis and comparison with results of other methods reported in the literature show that the new method is comparable and sometimes better in accuracy than the currently used schemes. Extension to multidimensional, time-dependent problems is straightforward. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
In this paper, a novel method called variational iteration method is proposed to solve nonlinear partial differential equations without linearization or small perturbations. In this method, a correction functional is constructed by a general Lagrange multiplier, which can be identified via variational theory. An analytical solution can be obtained from its trial-function with possible unknown constants, which can be identified by imposing the boundary conditions, by successively iteration.  相似文献   

10.
Picard’s iterative method for the solution of nonlinear advection-reaction-diffusion equations is formulated and its convergence proved. The method is based on the introduction of a complete metric space and makes uses of a contractive mapping and Banach’s fixed-point theory. From Picard’s iterative method, the variational iteration method is derived without making any use at all of Lagrange multipliers and constrained variations. Some examples that illustrate the advantages and shortcomings of the iterative procedure presented here are shown.  相似文献   

11.
In this paper, we discuss the existence, nonexistence and uniqueness of positive solutions of a one-parameter family of elliptic partial differential equations on RN (N>2). These equations are of interests in mathematical biology and Riemannian geometry. Our approach are based on variational arguments and comparison principles.  相似文献   

12.
The aim of this paper is to study the existence of solutions for second-order differential equations with instantaneous and non-instantaneous impulses. Applying variational method, the existence result is obtained.  相似文献   

13.
This paper presents the approximate analytical solution of a fractional Zakharov–Kuznetsov equation with the help of the powerful variational iteration method. The fractional derivatives are described in the Caputo sense. Several examples are given and the results are compared to exact solutions. The results show that the variational iteration method is very effective, convenient and simple to use.  相似文献   

14.
In this article, the variational iteration method (VIM) is used to obtain approximate analytical solutions of the modified Camassa‐Holm and Degasperis‐Procesi equations. The method is capable of reducing the size of calculation and easily overcomes the difficulty of the perturbation technique or Adomian polynomials. The results reveal that the VIM is very effective. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

15.
In this paper, a scheme is developed to study numerical solution of the space- and time-fractional Burgers equations with initial conditions by the variational iteration method (VIM). The exact and numerical solutions obtained by the variational iteration method are compared with that obtained by Adomian decomposition method (ADM). The results show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian decomposition method. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

16.
The time-delayed Burgers equation is introduced and the improved tanh-function method is used to construct exact multiple-soliton and triangular periodic solutions. For an understanding of the nature of the exact solutions that contained the time-delay parameter, we calculated the numerical solutions of this equation by using the Adomian decomposition method and the variational iteration method (IVM) to the boundary value problem.  相似文献   

17.
Zhao-Ling Tao 《Acta Appl Math》2008,100(3):291-294
It is well-known that not every partial differential equation admits a variational formula. A rigorous proof of the existence of a variational principle is very difficult. In this paper, the semi-inverse method proposed by Ji-Huan He is used to construct a variational principle for a one-dimensional inviscid compressible fluid.   相似文献   

18.
The variational iteration method (VIM) can be usefully applied for solving many linear and nonlinear scientific and engineering problems. In this note we show that He’s approach for solving nonlinear equations, arising from the VIM, is, actually, Schröder’s method presented in his classical work from 1870.  相似文献   

19.
In this study, linear and nonlinear partial differential equations with the nonhomogeneous initial conditions are considered. We used Variational iteration method (VIM) and Homotopy perturbation method (HPM) for solving these equations. Both methods are used to obtain analytic solutions for different types of differential equations. Four examples are presented to show the application of the present techniques. In these schemes, the solution takes the form of a convergent series with easily computable components. The present methods perform extremely well in terms of efficiency and simplicity. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

20.
In this paper we investigate oscillatory properties of the second order half-linear equation
Using the Riccati technique, the variational method and the reciprocity principle we establish new oscillation and nonoscillation criteria for (*). We also offer alternative methods of proofs of some recent oscillation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号