首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The objective of the present study is to investigate the effects of variable viscosity on incompressible laminar pulsatile flow of blood through an overlapping doubly constricted tapered artery. To mimic the realistic situation, wall of the artery is taken to be flexible, and physiologically relevant pulsatile flow is introduced. The governing equations of blood flow are made dimensionless. A coordinate transformation is used to make the overlapping doubly constricted wall geometry of tube to a straight tube. Taking advantage of the Stream function–Vorticity formulation, the system of partial differential equations is then solved numerically by finite difference approximations. Effects of Reynolds number, Strouhal number, degree of contraction, tapering angle, and viscosity parameters are presented graphically and analyzed. The results show that formation of stenosis and tapering disturb the flow field significantly, and degree of stenosis is more important in influencing blood flow compared with tapering.  相似文献   

2.
The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.  相似文献   

3.
A nonlinear two‐dimensional micropolar fluid model for blood flow in a tapered artery with a single stenosis is considered. This model takes into account blood rheology in which blood consists of microelements suspended in plasma. The classical Navier–Stokes theory is inadequate to describe the microrotations or particles' spin of such suspension in a viscous medium. The governing equations involving unsteady nonlinear partial differential equations are solved using a finite difference scheme. A quantitative analysis performed through numerical computation shows that the axial velocity profile and the flow rate decrease and the wall shear stress increases once the artery is narrower in the presence of the polar effect. Furthermore, the taper angle certainly bears the potential to influence the velocity and the flow characteristics to considerable extent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel–Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.  相似文献   

5.
采用计算流体力学方法分别对6种狭窄率的颈动脉内非Newton瞬态血流进行流固耦合数值分析.研究了狭窄率对颈动脉内血流动力学分布的影响,以探索狭窄率与颈动脉内粥样斑块形成的关系.结果表明,狭窄率不同的颈动脉内血流动力学分布特性明显不同,与0.05,0.1,0.2,0.3和04这5种狭窄率的颈动脉内血流动力学分布特性相比,狭窄率为0.5的颈动脉内血流动力学分布独特,狭窄部位附近区域存在面积较大的低速涡流区;复杂血流作用下,该区域分布低壁面压力,异常壁面切应力,较大管壁形变量和von Mises应力;血流速度低使血液中脂质、纤维蛋白等大分子易沉积,低壁面压力引起的明显“负压”效应引发脑部供血障碍,异常壁面切应力作用下粥样斑块易破裂与脱落,并堵塞脑血管,较大的von Mises应力易引起应力集中,导致血管破裂,为脑卒中发生提供有利条件.因此,狭窄率越大对颈动脉内血流动力学分布的影响越显著,促进颈动脉粥样斑块形成与发展,并引发缺血性脑卒中.  相似文献   

6.
In the present work, treating the arteries as a tapered, thin-walled, long and circularly conical prestressed elastic tube and using the long-wave approximation, we have studied the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admits a solitary wave type of solution with variable wave speed. It is observed that the wave speed increases with the scaled time parameter τ for positive tapering while it decreases for negative tapering, as expected.  相似文献   

7.
In the present work, treating the arteries as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solution with variable wave speed. It is observed that, the wave speed increases with distance for positive tapering while it decreases for negative tapering.  相似文献   

8.
In the present work, treating the arteries as a tapered, thin walled, long and circularly conical prestressed elastic tube and using the longwave approximation, we have studied the propagation of weakly nonlinear waves in such a fluid-filled elastic tube by employing the reductive perturbation method. By considering the blood as an incompressible inviscid fluid the evolution equation is obtained as the Korteweg-de Vries equation with a variable coefficient. It is shown that this type of equations admit a solitary wave type of solution with variable wave speed. It is observed that, the wave speed increases with distance for positive tapering while it decreases for negative tapering.  相似文献   

9.
The paper deals with numerical investigation of the effect of plaque morphology on the flow characteristics in a diseased coronary artery using realistic plaque morphology. The morphological information of the lumen and the plaque is obtained from intravascular ultrasound imaging measurements of 42 patients performed at Cleveland Clinic Foundation, Ohio. For this data, study of Bhaganagar et al. (2010) [1] has revealed the stenosis for 42 patients can be categorized into four types – type I (peak-valley), type II (ascending), type III (descending), and type IV (diffuse). The aim of the present study is to isolate the effect of shape of the stenosis on the flow characteristics for a given degree of the stenosis. In this study, we conduct fluid dynamic simulations for the four stenosis types (type I–IV) and analyze the differences in the flow characteristics between these types. Finely refined tetrahedral mesh for the 3-D solid model of the artery with plaques has been generated. The 3-D steady flow simulations were performed using the turbulence (kε) model in a finite volume based computational fluid dynamics solver. The axial velocity, the radial velocity, turbulence kinetic energy and wall shear stress profiles of the plaque have been analyzed. From the axial and radial velocity profiles results the differences in the velocity patterns are significantly visible at proximal as well as distal to the throat, region of maximum stenosis. Turbulent kinetic energy and wall shear stress profiles have revealed significant differences in the vicinity of the plaque. Additional unsteady flow simulations have been performed to validate the hypothesis of the significance of plaque morphology in flow alterations in diseased coronary artery. The results revealed the importance of accounting for plaque morphology in addition to plaque height to accurately characterize the turbulent flow in a diseased coronary artery.  相似文献   

10.
Physiological pulsatile flow in a 3D model of arterial stenosis is investigated by using large eddy simulation (LES) technique. The computational domain chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet using the first harmonic of the Fourier series of pressure pulse. In LES, the large scale flows are resolved fully while the unresolved subgrid scale (SGS) motions are modelled using a localized dynamic model. Due to the narrowing of artery the pulsatile flow becomes transition-to-turbulent in the downstream region of the stenosis, where a high level of turbulent fluctuations is achieved, and some detailed information about the nature of these fluctuations are revealed through the investigation of the turbulent energy spectra. Transition-to-turbulent of the pulsatile flow in the post stenosis is examined through the various numerical results such as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy, and pressure gradient. A comparison of the LES results with the coarse DNS are given for the Reynolds number of 2000 in terms of the mean pressure, wall shear stress as well as the turbulent characteristics. The results show that the shear stress at the upper wall is low just prior to the centre of the stenosis, while it is maximum in the throat of the stenosis. But, at the immediate post stenotic region, the wall shear stress takes the oscillating form which is quite harmful to the blood cells and vessels. In addition, the pressure drops at the throat of the stenosis where the re-circulated flow region is created due to the adverse pressure gradient. The maximum turbulent kinetic energy is located at the post stenosis with the presence of the inertial sub-range region of slope −5/3.  相似文献   

11.
研究肾动脉狭窄(RAS)对血液流动和血管壁的影响.根据CT扫描图像,重建腹部主动脉和肾动脉的解剖模型,通过模型的脉动流进行了仿真计算,计算中考虑了流体-固体结构的相互作用(FSI).研究RAS对血管壁剪切应力和位移的影响,RAS使得肾动脉中流量减少,肾素-血管紧缩素系统可能被激活,从而导致严重的高血压.  相似文献   

12.
圆锥形血管中的振荡发展流动   总被引:5,自引:2,他引:3  
本文在小锥度角的假设下,研究了圆锥形血管的非定常振荡的发展流动问题.导得了相应的速度分布公式.分析表明,所有收缩的圆锥形血管的流动都是发展流动,而且锥度角对发展流动的影响随着锥度角的增大而增大.  相似文献   

13.
This study analyses the pulsatile flow of blood through mild stenosed narrow arteries, treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is employed to solve the resulting coupled implicit system of non-linear partial differential equations. The expressions for shear stress, velocity, wall shear stress, plug core radius, flow rate and longitudinal impedance to flow are obtained. The effects of pulsatility, stenosis depth, peripheral layer thickness, body acceleration and non-Newtonian behavior of blood on these flow quantities are discussed. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow increase as the yield stress and stenosis depth increase and they decrease with the increase of the body acceleration, pressure gradient, width of the peripheral layer thickness. It is observed that the plug flow velocity and flow rate increase with the increase of the pulsatile Reynolds number, body acceleration, pressure gradient and the width of the peripheral layer thickness and the reverse behavior is found when the yield stress, stenosis depth and lead angle increase. It is also recorded that the wall shear stress and longitudinal impedance to flow are considerably lower for the two-fluid Casson model than that of the single-fluid Casson model. It is found that the presence of body acceleration and peripheral layer influences the mean flow rate and mean velocity by increasing their magnitude significantly in the arteries.  相似文献   

14.
Atherosclerosis is a major cause of death in developed countries. Mass accumulation in artery walls causes obstruction to the blood flow, stenoses, giving origin to life threatening events. This work focuses on the use of a simple and effective methodology for creating three-dimensional irregular stenosis in artery models for numerical and in vitro hemodynamic studies. The method infers the artery location prone to stenoses appearance by identifying areas of low wall shear stress. Then, by using a diffusional process, irregular shaped stenoses are artificially created. This simple diffusional process mimics aspects of the growth of stenoses, such as the growth rate dependence of a time dependent flux. The method was demonstrated using different artery models, one of them being taken from a healthy patient CT scan. The generated stenoses are irregularly shaped and are highly dependent on the flow patterns developed in each artery type. The method disclosed allows a fast hemodynamic comparison between healthy and a stenotic case for a given artery geometry.  相似文献   

15.
The present investigation deals with a mathematical model of blood flow through an asymmetric (about its narrowest point) arterial constriction obtained from casting of a mildly stenosed artery. The flowing blood is represented as the suspension of all red cells (erythrocytes) in plasma assumed to be Casson fluid, while the arterial wall is considered to be rigid having differently shaped stenoses in its lumen arising from various types of abnormal growth or plaque formation. The governing equations of motion accompanied by the appropriate choice of the boundary conditions are solved numerically by Marker and Cell method in order to compute the physiologically significant quantities with desired degree of accuracy. The necessary checking for numerical stability has been incorporated in the algorithm for better precision of the results computed. The quantitative analyses have been carried out finally with the inclusion of the respective profiles of the flow field over the entire arterial segment as well. The key factors such as the wall shear stress, the pressure drop and the velocity profiles are exhibited graphically and examined thoroughly for qualitative insight into blood flow phenomena through arterial stenosis.  相似文献   

16.
锥形血管入口区域内管壁应力分析   总被引:1,自引:0,他引:1  
本文对锥形血管入口区域的流动进行了探讨,导出了压力分布、轴向和径向的速度分布以及流场的切应力分布、管壁应力分布等公式,进行了相应的数值算例的研究和分析,还着重讨论了血管锥度角对管壁应力、压力分布等的影响。  相似文献   

17.
Pulsatile flow of blood through mild stenosed narrow arteries is analyzed by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the coupled implicit system of non-linear differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood on these flow quantities are discussed. It is found that the pressure drop, plug core radius, wall shear stress and resistance to flow increase with the increase of the yield stress or stenosis size while all other parameters held constant. The percentage of increase in the resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with those of the single-fluid model.  相似文献   

18.
The paper presents an analytical study of blood flow through a stenosed artery using a suitable mathematical model. The artery is modelled as an anisotropic viscoelastic cylindrical tube containing a non-Newtonian viscous incompressible fluid representing blood. The blood flow is assumed to be characterized by the Herschel–Bulkley model. The effect of the surrounding connective tissues on the motion of the arterial wall has been incorporated. Initially, the relevant solutions of the boundary value problem are obtained in the Laplace transform space, through the use of a suitable finite difference technique. Laplace inversion is carried out by employing suitable numerical techniques. Finally, the variations of the vascular wall displacements, the velocity distribution of the blood flow, the flux, the resistance to flow and the wall shear stress in the stenotic region are quantified through numerical computations and presented graphically.  相似文献   

19.
20.
In this work, a variational multiscale finite element formulation is used to study bifurcation flows of non-Newtonian fluids, using a representative simplified Carotid Artery geometry. In particular, the flow pattern and wall shear stress (WSS) computed using power-law, Cross, and Carreau–Yasuda models, are assessed. First, the formulation is validated by contrasting simulations of a benchmark test for bifurcation flows reported in the literature. After that, a study of blood flow through the carotid artery is presented. Hemodynamics conditions aimed to describe the flow behavior from diastole to systole of the cardiac cycle for healthy arteries and two specific conditions (60% carotid stenosis due to atherosclerosis and 20% increased bifurcation angle due to aging), are specifically analyzed. For each condition, the hemodynamics present different velocity fields that lead to distinctive distribution of WSS enable us to classified three regions, depending on their magnitude: low-WSS, medium-WSS and high-WSS. Results show that power-law flows predict lower wall shear stresses, especially in sections where geometry concentrates stresses, compared to those predicted using Cross and Carreau–Yasuda models. Overall, low-WSS are usually present in zones where stenosis develops even in healthy arteries, however, both geometries lead to a decrease of WSS magnitude in low-WSS regions, increasing the risk factor associated with plaque building.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号