首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Srivastava, Özarslan and Kaanoglu have introduced certain families of three and two variable polynomials, which include Lagrange and Lagrange-Hermite polynomials, and obtained families of two-sided linear generating functions between these families [H.M. Srivastava, M.A. Özarslan, C. Kaanoglu, Some families of generating functions for a certain class of three-variable polynomials, Integr. Transform. Spec. Funct. iFirst (2010) 1-12]. The main object of this investigation is to obtain new two-sided linear generating functions between these families by applying certain hypergeometric transformations. Furthermore, more general families of bilinear, bilateral, multilateral finite series relationships and generating functions are presented for them.  相似文献   

2.
Recently, Srivastava et al. introduced a new generalization of the Bernoulli, Euler and Genocchi polynomials (see [H.M. Srivastava, M. Garg, S. Choudhary, Russian J. Math. Phys. 17 (2010) 251-261] and [H.M. Srivastava, M. Garg, S. Choudhary, Taiwanese J. Math. 15 (2011) 283-305]). They established several interesting properties of these general polynomials, the generalized Hurwitz-Lerch zeta functions and also in series involving the familiar Gaussian hypergeometric function. By the same motivation of Srivastava’s et al. [11] and [12], we introduce and derive multiplication formula and some identities related to the generalized Bernoulli type polynomials of higher order associated with positive real parameters a, b and c. We also establish multiple alternating sums in terms of these polynomials. Moreover, by differentiating the generating function of these polynomials, we give a interpolation function of these polynomials.  相似文献   

3.
Recently, Chan, Chyan and Srivastava [W.-C.C. Chan, C.-J. Chyan, H.M. Srivastava, The Lagrange polynomials in several variables, Integral Transform. Spec. Funct. 12 (2001) 139-148] introduced and systematically investigated the Lagrange polynomials in several variables. In the present paper, we derive various families of multilinear and multilateral generating functions for the Chan-Chyan-Srivastava multivariable polynomials.  相似文献   

4.
In this paper authors prove a general theorem on generating relations for a certain sequence of functions. Many formulas involving the families of generating functions for generalized hypergeometric polynomials are shown here to be special cases of a general class of generating functions involving generalized hypergeometric polynomials and multiple hypergeometric series of several variables. It is then shown how the main result can be applied to derive a large number of generating functions involving hypergeometric functions of Kampé de Fériet, Srivastava, Srivastava-Daoust, Chaundy, Fasenmyer, Cohen, Pasternack, Khandekar, Rainville and other multiple Gaussian hypergeometric polynomials scattered in the literature of special functions.  相似文献   

5.
Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, J. Math. Anal. Appl. 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main object of this paper is to investigate an analogous generalization of the Genocchi polynomials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order. For these generalized Apostol-Genocchi polynomials, we establish several elementary properties, provide some explicit relationships with the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, and derive various explicit series representations in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta function. We also deduce their special cases and applications which are shown here to lead to the corresponding results for the Genocchi and Euler polynomials of higher order. By introducing an analogue of the Stirling numbers of the second kind, that is, the so-called λ-Stirling numbers of the second kind, we derive some basic properties and formulas and consider some interesting applications to the family of the Apostol type polynomials. Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Comput. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our investigation.  相似文献   

6.
We investigate several properties of the linear Choi-Saigo-Srivastava operator and associated classes of analytic functions which were introduced and studied by J.H. Choi, M. Saigo and H.M. Srivastava [J.H. Choi, M. Saigo, H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002) 432-445]. Several theorems are an extension of earlier results of the above paper.  相似文献   

7.
The purpose of this paper is to define a new class polynomials. Special cases of these polynomials give many famous family of the Bernstein type polynomials and beta polynomials. We also construct generating functions for these polynomials. We investigate some fundamental properties of these functions and polynomials. Using functional equations and generating functions, we derive various identities related to theses polynomials. We also construct interpolation function that interpolates these polynomials at negative integers. Finally, we give a matrix representations of these polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The main object of this paper is to construct a systematic investigation of a multivariable extension of the extended Jacobi polynomials and give some relations for these polynomials. We derive various families of multilinear and multilateral generating functions. We also obtain relations between the polynomials extended Jacobi polynomials and some other well-known polynomials. Other miscellaneous properties of these general families of multivariable polynomials are also discussed. Furthermore, some special cases of the results are presented in this study.  相似文献   

9.
In this paper the authors prove a generalization of certain generating functions for Jacobi and related polynomials, given recently by H. M. Srivastava. The method used is due to Pólya and Szegö, and it is based on Rodrigues' formula for the Jacobi polynomials and Lagrange's expansion theorem. A number of special and limiting cases of the main result will give rise to a class of generating functions for ultraspherical, Laguerre and Bessel polynomials.  相似文献   

10.
The authors present six general integral formulas (four definite integrals and two contour inegrals) for theH-function of several complex variables, which was introduced and studied in a series of earlier papers by H. M. Srivastava and R. Panda (cf., e.g., [25] through [29]; see also [14] through [18], [20], [24], [32], [34], [35], [37], and [38]). Each of these integral formulas involves a product of the multivariableH-function and a general class of polynomials with essentially arbitrary coefficients which were considered elsewhere by H. M. Srivastava [21]. By assigning suiatble special values to these coefficients, the main results (contained in Theorems 1, 2 and 3 below) can be reduced to integrals involving the classical orthogonal polynomials including, for example, Hermite, Jacobi [and, of course, Gegenbauer (or ultraspherical), Legendre, and Tchebycheff], and Laguerre polynomials, the Bessel polynomials considered by H. L. Krall and O. Frink [9], and such other classes of generalized hypergeometric polynomials as those studied earlier by F. Brafman [3] and by H. W. Gould and A. T. Hopper [8]. On the other hand, the multivariableH-functions occurring in each of our main results can be reduced, under various special cases, to such simpler functions as the generalized Lauricella hypergeometric functions of several complex variables [due to H. M. Srivastava and M. C. Daoust (cf. [22] and [23])] which indeed include a great many of the useful functions (or the products of several such functions) of hypergeometric type (in one and more variables) as their particular cases (see,e. g., [1], [10] and [39]). Many of the aforementioned applications of our integral formulas (contained in Theorems 1, 2 and 3 below) are considered briefly. Further usefulness of some of these consequences of Theorems 1 and 2 in terms of the classical orthogonal polynomials is illustrated by considering a simple problem involving the orthogonal expansion of the multivariableH-function in series of Jacobi polynomials. It is also shown how these general integrals are related to a number of results scattered in the literature. 0261 0262 V  相似文献   

11.
The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161-167] and [H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77-84]) for the so-called Apostol-Bernoulli numbers and polynomials of higher order. We establish their elementary properties, derive several explicit representations for them in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce their special cases and applications which are shown here to lead to the corresponding results for the classical Bernoulli numbers and polynomials of higher order.  相似文献   

12.
Recently N.E. Cho, O.S. Kwon and H.M. Srivastava [Nak Eun Cho, Oh Sang Kwon, H.M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004) 470-483] have introduced the class of multivalent analytic functions and have given a number of results. This class has been defined by means of a special linear operator associated with the Gaussian hypergeometric function. In this paper we have extended some of the previous results and have given other properties of this class. We have made use of differential subordinations and properties of convolution in geometric function theory.  相似文献   

13.
We prove a generalization of the Kibble–Slepian formula (for Hermite polynomials) and its unitary analogue involving the 2D Hermite polynomials recently proved in [16]. We derive integral representations for the 2D Hermite polynomials which are of independent interest. Several new generating functions for 2D q-Hermite polynomials will also be given.  相似文献   

14.
Recently, Srivastava and Pintér proved addition theorems for the generalized Bernoulli and Euler polynomials. Luo and Srivastava obtained the anologous results for the generalized Apostol–Bernoulli polynomials and the generalized Apostol–Euler polynomials. Finally, Tremblay et al. gave analogues of the Srivastava–Pintér addition theorem for general family of Bernoulli polynomials. In this paper, we obtain Srivastava–Pintér type theorems for 2D‐Appell Polynomials. We also give the representation of 2D‐Appell Polynomials in terms of the Stirling numbers of the second kind and 1D‐Appell polynomials. Furthermore, we introduce the unified 2D‐Apostol polynomials. In particular, we obtain some relations between that family of polynomials and the generalized Hurwitz–Lerch zeta function as well as the Gauss hypergeometric function. Finally, we present some applications of Srivastava–Pintér type theorems for 2D‐Appell Polynomials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
We consider a multiplier transformation and some subclasses of the class of meromorphic functions which was defined by means of the Hadamard product by N.E. Cho, O.S. Kwon and H.M. Srivastava in [N.E. Cho, O.S. Kwon, H.M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300 (2004) 505-520].  相似文献   

16.
Recently Srivastava et al. [J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003) 7-18; J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13; Y.C. Kim, H.M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Var. Theory Appl. 34 (1997) 293-312] introduced and studied a class of analytic functions associated with the generalized hypergeometric function. In the present paper, by using the Briot-Bouquet differential subordination, new results in this class are obtained.  相似文献   

17.
ABSTRACT

In this article, we first give some basic properties of generalized Hermite polynomials associated with parabolic cylinder functions. We next use Weisner? group theoretic method and operational rules method to establish new generating functions for these generalized Hermite polynomials. The operational methods we use allow us to obtain unilateral, bilinear and bilateral generating functions by using the same procedure. Applications of generating functions obtained by Weisner? group theoretic method are discussed.  相似文献   

18.
Bilateral generating functions are those involving products of different types of polynomials. We show that operational methods offer a powerful tool to derive these families of generating functions. We study cases relevant to products of Hermite polynomials with Laguerre, Legendre and other polynomials. We also propose further extensions of the method which we develop here.  相似文献   

19.
The main purpose of this paper is to present various families of generating functions for a class of polynomials in two variables. Furthermore, several general classes of bilinear, bilateral or mixed multilateral generating functions are obtained for these polynomials.  相似文献   

20.
In this paper, we present a multivariable extension of the Humbert polynomials, which is motivated by the Chan-Chyan-Srivastava multivariable polynomials, the multivariable extension of the familiar Lagrange-Hermite polynomials and Erkus-Srivastava multivariable polynomials. We derive various families of multilinear and mixed multilateral generating functions for these polynomials. Other miscellaneous properties of these multivariable polynomials are also discussed. Some special cases of the results presented in this study are also indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号