共查询到20条相似文献,搜索用时 15 毫秒
1.
For an equation f(x)=0 having a multiple root of multiplicity m>1 unknown, we propose a transformation which converts the multiple root to a simple root of H(x)=0. The transformed function H(x) of f(x) with a small >0 has appropriate properties in applying a derivative free iterative method to find the root. Moreover, there is no need to choose a proper initial approximation. We show that the proposed method is superior to the existing methods by several numerical examples. 相似文献
2.
《Journal of the Egyptian Mathematical Society》2013,21(3):334-339
The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods. 相似文献
3.
A family of eighth-order iterative methods with four evaluations for the solution of nonlinear equations is presented. Kung and Traub conjectured that an iteration method without memory based on n evaluations could achieve optimal convergence order 2n-1. The new family of eighth-order methods agrees with the conjecture of Kung-Traub for the case n=4. Therefore this family of methods has efficiency index equal to 1.682. Numerical comparisons are made with several other existing methods to show the performance of the presented methods. 相似文献
4.
R. Thukral 《Applied mathematics and computation》2010,217(1):222-6635
In this paper we present an improvement of the fourth-order Newton-type method for solving a nonlinear equation. The new Newton-type method is shown to converge of the order eight. Per iteration the new method requires three evaluations of the function and one evaluation of its first derivative and therefore the new method has the efficiency index of , which is better than the well known Newton-type methods of lower order. We shall examine the effectiveness of the new eighth-order Newton-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons are made with several other existing methods to show the performance of the presented method. 相似文献
5.
In this paper, a general family of Steffensen-type methods with optimal order of convergence for solving nonlinear equations is constructed by using Newton’s iteration for the direct Newtonian interpolation. It satisfies the conjecture proposed by Kung and Traub [H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 634-651] that an iterative method based on m evaluations per iteration without memory would arrive at the optimal convergence of order 2m−1. Its error equations and asymptotic convergence constants are obtained. Finally, it is compared with the related methods for solving nonlinear equations in the numerical examples. 相似文献
6.
Modification of Newton’s method with higher-order convergence is presented. The modification of Newton’s method is based on King’s fourth-order method. The new method requires three-step per iteration. Analysis of convergence demonstrates that the order of convergence is 16. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newton’s method and other methods. 相似文献
7.
In this paper, we present a new fourth-order method for finding multiple roots of nonlinear equations. It requires one evaluation of the function and two of its first derivative per iteration. Finally, some numerical examples are given to show the performance of the presented method compared with some known third-order methods. 相似文献
8.
We construct a new iterative method for approximating the solutions of nonlinear operator equations, where the operator involved is not differentiable. The algorithm proposed does not need to evaluate derivatives and is more efficient than the secant method. For this, we extend a result of Traub for one-point iterative methods to one-point iterative methods with memory. 相似文献
9.
J.I. Ramos 《Applied mathematics and computation》2009,215(4):1526-1536
Picard’s iterative method for the solution of nonlinear advection-reaction-diffusion equations is formulated and its convergence proved. The method is based on the introduction of a complete metric space and makes uses of a contractive mapping and Banach’s fixed-point theory. From Picard’s iterative method, the variational iteration method is derived without making any use at all of Lagrange multipliers and constrained variations. Some examples that illustrate the advantages and shortcomings of the iterative procedure presented here are shown. 相似文献
10.
In this paper, a family of fourth-order Steffensen-type two-step methods is constructed to make progress in including Ren-Wu-Bi’s methods [H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence, Appl. Math. Comput. 209 (2009) 206-210] and Liu-Zheng-Zhao’s method [Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications, Appl. Math. Comput. 216 (2010) 1978-1983] as its special cases. Its error equation and asymptotic convergence constant are deduced. The family provides the opportunity to obtain derivative-free iterative methods varying in different rates and ranges of convergence. In the numerical examples, the family is not only compared with the related methods for solving nonlinear equations, but also applied in the solution of BVPs of nonlinear ODEs by the finite difference method and the multiple shooting method. 相似文献
11.
In this paper we present a new efficient sixth-order scheme for nonlinear equations. The method is compared to several members of the family of methods developed by Neta (1979) [B. Neta, A sixth-order family of methods for nonlinear equations, Int. J. Comput. Math. 7 (1979) 157-161]. It is shown that the new method is an improvement over this well known scheme. 相似文献
12.
Two families of derivative free two-point iterative methods for solving nonlinear equations are constructed. These methods use a suitable parametric function and an arbitrary real parameter. It is proved that the first family has the convergence order four requiring only three function evaluations per iteration. In this way it is demonstrated that the proposed family without memory supports the Kung-Traub hypothesis (1974) on the upper bound 2n of the order of multipoint methods based on n + 1 function evaluations. Further acceleration of the convergence rate is attained by varying a free parameter from step to step using information available from the previous step. This approach leads to a family of two-step self-accelerating methods with memory whose order of convergence is at least and even in special cases. The increase of convergence order is attained without any additional calculations so that the family of methods with memory possesses a very high computational efficiency. Numerical examples are included to demonstrate exceptional convergence speed of the proposed methods using only few function evaluations. 相似文献
13.
14.
José Mario Martínez 《BIT Numerical Mathematics》1980,20(4):501-510
We describe an implementation of a generalization of Brent's method for solving systems of nonlinear equations. Some important features of the algorithm, like step control, discretization of derivatives and stopping criteria, are discussed. In particular we give numerical experiences which show that a stopping criterion proposed by D. Gay is efficient. 相似文献
15.
In this paper, a variant of Steffensen’s method of fourth-order convergence for solving nonlinear equations is suggested. Its error equation and asymptotic convergence constant are proven theoretically and demonstrated numerically. The derivative-free method only uses three evaluations of the function per iteration to achieve fourth-order convergence. Its applications on systems of nonlinear equations and boundary-value problems of nonlinear ODEs are showed as well in the numerical examples. 相似文献
16.
In this work we present a family of predictor-corrector methods free from second derivative for solving nonlinear systems. We prove that the methods of this family are of third order convergence. We also perform numerical tests that allow us to compare these methods with Newton’s method. In addition, the numerical examples improve theoretical results, showing super cubic convergence for some methods of this family. 相似文献
17.
In this study, we develop a four-parameter family of sixth order convergent iterative methods for solving nonlinear scalar equations. Methods of the family require evaluation of four functions per iteration. These methods are totally free of derivatives. Convergence analysis shows that the family is sixth order convergent, which is also verified through the numerical work. Though the methods are independent of derivatives, computational results demonstrate that family of methods are efficient and demonstrate equal or better performance as compared with other six order methods, and the classical Newton method. 相似文献
18.
Miquel Grau-Snchez Josep M. Peris Jos M. Gutirrez 《Applied mathematics and computation》2007,190(2):1815-1823
In this paper, we present a technique to construct iterative methods to approximate the zeros of a nonlinear equation F(x)=0, where F is a function of several variables. This technique is based on the approximation of the inverse function of F and on the use of a fixed point iteration. Depending on the number of steps considered in the fixed point iteration, or in other words, the number of evaluations of the function F, we obtain some variants of classical iterative processes to solve nonlinear equations. These variants improve the order of convergence of classical methods. Finally, we show some numerical examples, where we use adaptive multi-precision arithmetic in the computation that show a smaller cost. 相似文献
19.
In this work, we develop a family of predictor-corrector methods free from second derivative for solving systems of nonlinear equations. In general, the obtained methods have order of convergence three but, in some particular cases the order is four. We also perform different numerical tests that confirm the theoretical results and allow us to compare these methods with Newton’s classical method and with other recently published methods. 相似文献
20.
A new algorithm for singular value decomposition (SVD) is presented through relating SVD problem to nonlinear systems whose solutions are constrained on hyperplanes. The hyperplane constrained nonlinear systems are solved with the help of Newton’s iterative method. It is proved that our SVD algorithm has the quadratic convergence substantially and all singular pairs are computable. These facts are also confirmed by some numerical examples. 相似文献