首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
An inventory model with reliability in an imperfect production process   总被引:1,自引:0,他引:1  
The paper analyzes an economic manufacturing quantity (EMQ) model with price and advertising demand pattern in an imperfect production process under the effect of inflation. If the machine goes through a long-run process, it may shift from in-control state to out-of-control state. As a result, the system produces imperfect items. The imperfect items are reworked at a cost to make it as new. The production of imperfect quality items increases with time. To reduce the production of the imperfect items, the systems have to more reliable and the produced items depend on the reliability of the machinery system. In this direction, the author considers that the development cost, production cost, material cost are dependent on reliability parameter. Considering reliability as a decision variable, the author constructs an integrated profit function which is maximized by control theory. A numerical example along with graphical representation and sensitivity analysis are provided to illustrate the model.  相似文献   

2.
This paper considers a production/inventory system where items produced/purchased are of different qualities: Types A and B. Type A items are of perfect quality, and Type B items are of imperfect quality; but not necessarily defective; and have a lower selling price. The percentage of Type A (the yield rate) is assumed to be a random variable with known probability distribution. The electronics industry gives good examples of such situations. We extend the classical single period (newsvendor) and the economic order quantity (EOQ) models by accounting for random supply and for imperfect quality (Type B) items which are assumed to have their own demand and cost structure. We develop mathematical models and prove concavity of the expected profit function for both situations. We also present detailed analysis and numerical results. We focus on comparing the profitability of the novel proposed models with models from the literature (and derivatives of these models) that develop the optimal order quantity based on the properties of Type A items only (and ignore Type B items). We find that accounting for Type B items can significantly improve profitability.  相似文献   

3.
The paper develops a model to determine the optimal product reliability and production rate that achieves the biggest total integrated profit for an imperfect manufacturing process. The basic assumption of the classical Economic Manufacturing Quantity (EMQ) model is that all manufacturing items are of perfect quality. The assumption is not true in practice. Most of the production system produces perfect and imperfect quality items. In some cases the imperfect quality (non conforming) items are reworked at a cost to restore its quality to the original one. Rework cost may be reduced by improvements in product reliability (i.e., decreasing in product reliability parameter). Lower value of product reliability parameter results in increase development cost of production and also smaller quantity of nonconforming products. The unit production cost is a function of product reliability parameter and production rate. As a result, higher development cost increases unit production cost. The problem of optimal planning work and rework processes belongs to the broad field of production–inventory model which deals with all kinds of reuse processes in supply chains. These processes aim to recover defective product items in such a way that they meet the quality level of ‘good item’. The benefits from imperfect quality items are: regaining the material and value added on defective items and improving the environment protection. In this point of view, a model is introduced here to guide a firm/industry in addressing variable product reliability factor, variable unit production cost and dynamic production rate for time-varying demand. The paper provides an optimal control formulation of the problem and develops necessary and sufficient conditions for optimality of the dynamic variables. In this purpose, the Euler–Lagrange method is used to obtain optimal solutions for product reliability parameter and dynamic production rate. Finally, numerical examples are given to illustrate the proposed model.  相似文献   

4.
The classical economic order quantity (EOQ) model assumes that items produced are of perfect quality and that the unit cost of production is independent of demand. However, in realistic situations, product quality is never perfect, but is directly affected by the reliability of the production process. In this paper, we consider an EOQ model with imperfect production process and the unit production cost is directly related to process reliability and inversely related to the demand rate. In addition, a numerical example is given to illustrate the developed model. Sensitivity analysis is also performed and discussed.  相似文献   

5.
Chuang-Chun Chiou  L. Ho-Chun Chen 《PAMM》2007,7(1):2060077-2060078
The classic EPQ model assumes that items are produced of perfect quality and no shortage is permitted. In the real world situation, however, due to process deterioration or other factors, the occurrence of imperfect quality items is inevitable. This paper develops an extended economic production quantity (EPQ) model with imperfect production, shortage, and imperfect rework. We assume that the quality scan is conducted during the production. The scanned imperfect items are classified as the repairable and scrap. We consider that not all of the repairable items can be restored to meet the specified quality standard. Only some portion of defective items can be restored as normal items, the other results in defective, due to repair failure, can be sold at a discounted price to a secondary market. The renewal reward theorem is utilized to deal with the variable cycle length. The production quantity and the shortage level are determined in an optimal manner so as to minimize the average system cost. A numerical example is used to demonstrate its practical usage. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This article considers a production-inventory system consisting of a single imperfect unreliable machine. The items manufactured by the system are either perfect items or imperfect items, which require a rework to be restored to perfect quality. The rework rate is permitted to be different from the production rate if the rework process is different from the main manufacturing process. The fraction of the number of imperfect items is random following a general distribution function. The time to failure of the machine is random, following a general distribution function. If the machine fails before the lot is completed, the production is interrupted and the machine repair is started immediately. A random machine repair time is assumed, with a general distribution function. Unlike a common assumption in the literature, after the repair of the machine is completed, the production resumes. During the machine repair, a shortage can occur. A single-variable expected average cost function is derived to find the optimal lot size. Because of the complexity in the model, the ABC heuristic is proposed and implemented to find a near optimal value for the lot size. The article also provides a sensitivity analysis of the model's key parameters. It has been observed that the lot interruption-resumption policy leads to smaller lot sizes.  相似文献   

7.
The classic economic production quantity (EPQ) model assumes a continuous inventory-issuing policy for satisfying product demand and a perfect production for all items produced. However, in a real-life vendor–buyer integrated system, a multi-delivery policy is often used in lieu of continuous issuing policy and it is inevitable to generate defective items during a production run. This study addresses these issues by incorporating multiple deliveries of the finished batch, customer's inventory-holding cost and manufacturer's quality assurance cost into an EPQ model with the imperfect reworking of random defective items. Mathematical modelling and analyses are employed. Convexity of the long-run expected cost function is proved by the use of Hessian matrix equations, and the closed-form solutions in terms of the optimal lot size and optimal number of deliveries are obtained. The research results are demonstrated with a numerical example with a discussion on its practical usage.  相似文献   

8.
The classical economic production quantity (EPQ) model assumes that items produced are of perfect quality and that the unit cost of production is fixed. However, in realistic situations, product quality is never perfect but is directly affected by the production processes and the quality assurance programme. In addition, the unit production cost is not fixed but increases with quality assurance expenses. We present an EPQ model with imperfect production processes and quality-dependent unit production cost. After discussion of the procedure for determining the optimal solution, a sensitivity analysis of the impacts of the cost parameters on the optimal solution is provided. Finally, the problems associated with cost estimation are addressed.  相似文献   

9.
In this paper, we model the effects of imperfect production processes on the economic lot scheduling problem (ELSP). It is assumed that the production facility starts in the in-control state producing items of high or perfect quality. However the facility may deteriorate with time and shifts at a random time to an out of control state and begins to produce nonconforming items. A mathematical model is developed for ELSP taking into account the effect of imperfect quality and process restoration. Numerical examples are presented to illustrate important issues related to the developed model.  相似文献   

10.
This paper derives the optimal replenishment policy for imperfect quality economic manufacturing quantity (EMQ) model with rework and backlogging. The classic EMQ model assumes that all items produced are of perfect quality. However, in real‐life manufacturing settings, generation of imperfect quality items is almost inevitable. In this study, a random defective rate is assumed. All items produced are inspected and the defective items are classified as scrap and repairable. A rework process is involved in each production run when regular manufacturing process ends, and a rate of failure in repair is also assumed. Unit disposal cost and unit repairing and holding costs are included in our mathematical modelling and analysis. The renewal reward theorem is employed in this study to cope with the variable cycle length. The optimal replenishment policy in terms of lot‐size and backlogging level that minimizes expected overall costs for the proposed imperfect quality EMQ model is derived. Special cases of the model are identified and discussed. Numerical example is provided to demonstrate its practical usage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
We study two deterministic scheduling problems that combine batching and deterioration features. In both problems, there is a certain demand for identical good quality items to be produced in batches. In the first problem, each batch is assigned an individual machine that requires a cost and a time to be activated. All the machines are identical, work in parallel, and always produce good quality items. All the items are available at time zero and they deteriorate while waiting for production. Deterioration results in a linear increase of time and cost of production. In the second problem, there is a single machine that produces good quality as well as defective items in batches. Each batch is preceded by a setup time and requires a setup cost. Defective items have to be reworked on the same machine. They deteriorate while waiting for rework. At a time to be decided, the machine switches from production to rework defective items of the current batch. After rework, every defective item has the required good quality. In both problems, the objective is to find batch partitioning such that a linear combination of the production cost and production completion time is minimized. The two problems are observed at computer service providers and also reverse logistics. In computer service providers, machines and items correspond to communication service channels and information transfer tasks, respectively. We reduce both problems to minimizing a function of one variable representing the number of batches. In an optimal solution of either problem, there are at most two different batch sizes. Linear time algorithms are proposed for both problems.  相似文献   

12.
Deteriorating production processes are common in reality. Although every production process starts in an ‘in-control’ state to produce items of acceptable quality, it may shift to an ‘out-of-control’ state, owing to ageing, at any random time and produce defective items. In the present article, we study the Economic Lot Scheduling Problem (ELSP) with imperfect production processes having significant changeovers between the products. The mathematical models are developed for the ELSP using both the common cycle approach and the time-varying lot sizes approach, taking into account the effects of imperfect quality and process restoration. Numerical examples are cited to illustrate the solution procedures and to compare the performances of the solution methodologies adopted to solve the ELSP.  相似文献   

13.
In this paper, we study the inventory model for defective items with trapezoidal type demand rate. This paper develops a model to determine the optimal product reliability and production rate that achieves the biggest total integrated profit for an imperfect manufacturing process and necessary and sufficient conditions for optimality of the dynamic variables are given. The Euler–Lagrange method is used to obtain optimal solutions for product reliability parameter and dynamic production rate. Finally, numerical examples are presented to illustrate the proposed model. Suggestions for further research are provided.  相似文献   

14.
The paper investigates an EPL (Economic Production Lotsize) model in an imperfect production system in which the production facility may shift from an ‘in-control’ state to an ‘out-of-control’ state at any random time. The basic assumption of the classical EPL model is that 100% of produced items are perfect quality. This assumption may not be valid for most of the production environments. More specifically, the paper extends the article of Khouja and Mehrez [Khouja, M., Mehrez, A., 1994. An economic production lot size model with imperfect quality and variable production rate. Journal of the Operational Research Society 45, 1405–1417]. Generally, the manufacturing process is ‘in-control’ state at the starting of the production and produced items are of conforming quality. In long-run process, the process shifts from the ‘in-control’ state to the ‘out-of-control’ state after certain time due to higher production rate and production-run-time.The proposed model is formulated assuming that a certain percent of total product is defective (imperfect), in ‘out-of-control’ state. This percentage also varies with production rate and production-run time. The defective items are restored in original quality by reworked at some costs to maintain the quality of products in a competitive market. The production cost per unit item is convex function of production rate. The total costs in this investment model include manufacturing cost, setup cost, holding cost and reworking cost of imperfect quality products. The associated profit maximization problem is illustrated by numerical examples and also its sensitivity analysis is carried out.  相似文献   

15.
The assumptions required to justify the use of the economic order quantity model (EOQ) are rarely met. To provide mathematical models that more closely represent real-life situations, these assumptions must be relaxed. Among these assumptions are, first, items stocked are of perfect quality, and second, they preserve their characteristics during their stay in inventory. This paper considers a modified EOQ-type inventory model for a deteriorating item with unreliable supply. That is, a percentage of the on-hand inventory is wasted due to deterioration. Moreover, orders may contain a random proportion of defective items, which follow a known distribution. As soon as an order is received, a retailer conducts a screening process to identify imperfect quality items, which are salvaged as a single batch at the end of the screening process. First, a mathematical model is developed, assuming that no shortages are allowed. For that, it is assumed that the inventory level when placing an order is just enough to cover the demand during the screening period. The concavity of the profit function is established and sensitivity analysis is provided to analyze the impact of changing various model parameters on the optimal order quantity and profit. Then, the assumption of no shortages is relaxed, and a model is developed to incorporate backorders. We analyze the model with backorders numerically and provide managerial insights.  相似文献   

16.
This paper presents an entropic version of an EOQ model with imperfect quality items. The approach adopted herein models the commodity flow (demand rate) as a heat flow in a thermodynamic system. As a result, an entropy cost term is added to the classical inventory cost to form an entropic total inventory cost function. This provides an estimation of the hidden or difficult to estimate cost inventory systems that usually are the result of disorder (or entropy). A mathematical model is developed with numerical results presented and discussed.  相似文献   

17.
The classical economic order quantity model, although well known and useful; assumes that all items received conform to quality characteristics. However, in practice, items may be damaged due to transportation and/or production conditions. This requires a buyer to screen each lot it receives from its vendor to separate the good from the nonconforming (due to imperfect quality) items. While screening is usually a manual task performed by inspectors, it may improve with learning. Besides, it was observed in some studies that coordinating activities (e.g., quality) between a buyer and a vendor may be subject to learning effects and results in improving the quality of each lot (as it contains less nonconforming items) delivered or produced.  相似文献   

18.
Effects of imperfect products on lot sizing with work in process inventory   总被引:1,自引:0,他引:1  
The economic production quantity (EPQ) is one of the most widely known inventory control models that can be regarded as the generalized form of the Economic Order Quantity. However, the model is built on an unrealistic assumption that all the produced items need to be of perfect quality. Also, the introduction of work in process, WIP, as part of the inventory has been of lesser concern in developing inventory models. This paper attempts to develop the economic production quantity considering work in process inventory and manufacturing imperfect products that may be either reworkable or non-reworkable. The non-reworkable imperfect products are sold at a reduced price. This paper introduces a new model for this problem.  相似文献   

19.
Some classical studies on economic production quantity (EPQ) models with imperfect production processes have focused on determining the optimal production lot size. However, these models neglect the fact that the total production-inventory costs can be reduced by reworking imperfect items for a relatively small repair and holding cost. To account for the above phenomenon, we take the out of stock and rework into account and establish an EPQ model with imperfect production processes, failure in repair and complete backlogging. Furthermore, we assume that the holding cost of imperfect items is distinguished from that of perfect ones, as well as, the costs of repair, disposal, and shortage are all included in the proposed model. In addition, without taking complex differential calculus to determine the optimal production lot size and backorder level, we employ an arithmetic-geometric mean inequality method to determine the optimal solutions. Finally, numerical examples and sensitivity analysis are analyzed to illustrate the validity of the proposed model. Some managerial insights are obtained from the numerical examples.  相似文献   

20.
This paper focuses on a dynamic, continuous-time control generalization of the unbounded knapsack problem. This generalization implies that putting items in a knapsack takes time and has a due date. Specifically, the problem is characterized by a limited production horizon and a number of item types. Given an unbounded number of copies of each type of item, the items can be put into a knapsack at a controllable production rate subject to the available capacity. The demand for items is not known until the end of the production horizon. The objective is to collect items of each type in order to minimize shortage and surplus costs with respect to the demand. We prove that this continuous-time problem can be reduced to a number of discrete-time problems. As a result, solvable cases are found and a polynomial-time algorithm is suggested to approximate the optimal solution with any desired precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号