首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, generalized Hirota-Satsuma coupled KdV equation is solved using by two recent semi-analytic methods, differential transform method (DTM) and reduced form of differential transformation method (so called RDTM). The concepts of DTM and RDTM is briefly introduced, and their application for generalized Hirota-Satsuma coupled KdV equation is studied. The results obtained employing DTM and RDTM are compared with together and exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by classic DTM. The numerical results reveal that the RDTM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the RDTM can be found widely applicable in engineering.  相似文献   

2.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

3.
In this paper, a relatively new semi-analytical method, called differential transformation method (DTM), is generalized to analyze the free vibration problem of pipes conveying fluid with several typical boundary conditions. The natural frequencies and critical flow velocities are obtained using DTM. The results are compared with those predicted by the differential quadrature method (DQM) and with other results reported in the literature. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of pipes conveying fluid.  相似文献   

4.
This study analyses the free vibrations of circular thin plates for simply supported, clamped and free boundary conditions. The solution method used is differential transform method (DTM), which is a semi-numerical-analytical solution technique that can be applied to various types of differential equations. By using DTM, the governing differential equations are reduced to recurrence relations and its related boundary/regularity conditions are transformed into a set of algebraic equations. The frequency equations are obtained for the possible combinations of the outer edge boundary conditions and the regularity conditions at the center of the circular plate. Numerical results for the dimensionless natural frequencies are presented and then compared to the Bessel function solution and the numerical solutions that appear in literature. It is observed that DTM is a robust and powerful tool for eigenvalue analysis of circular thin plates.  相似文献   

5.
The effects of loading on the optimal shape of an Euler-Bernoulli column is investigated by considering four loading conditions which are mainly classified as eccentric compressive and follower type. The governing equations obtained from the structural stability condition of the column are used as a constraint to determine the minimum value of the volume by applying Hamilton principle. In the preceding task, the analysis is presented in step-by-step manner. The calculations are carried out by using differential transform method (DTM) which is a seminumerical-analytical solution technique that can be applied to various types of differential equations. By using DTM, the non-linear constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set of algebraic equations. The optimal distribution of cross-sectional area along column-length is obtained. Then, the volume of such column is calculated and compared to that of the uniform column which is also stable under given loading. The results obtained revealed out that DTM is a quite powerful solution technique for optimal shape analysis of a column structure.  相似文献   

6.
The free vibration and stability of axially functionally graded tapered Euler–Bernoulli beams are studied through solving the governing differential equations of motion. Observing the fact that the conventional differential transform method (DTM) does not necessarily converge to satisfactory results, a new approach based on DTM called differential transform element method (DTEM) is introduced which considerably improves the convergence rate of the method. In addition to DTEM, differential quadrature element method of lowest-order (DQEL) is used to solve the governing differential equation, as well. Carrying out several numerical examples, the competency of DQEL and DTEM in determination of free longitudinal and free transverse frequencies and critical buckling load of tapered Euler–Bernoulli beams made of axially functionally graded materials is verified.  相似文献   

7.
In this article, a Differential Transform Method (DTM) based on the mean fourth calculus is developed to solve random differential equations. An analytical mean fourth convergent series solution is found for a nonlinear random Riccati differential equation by using the random DTM. Besides obtaining the series solution of the Riccati equation, we provide approximations of the main statistical functions of the stochastic solution process such as the mean and variance. These approximations are compared to those obtained by the Euler and Monte Carlo methods. It is shown that this method applied to the random Riccati differential equation is more efficient than the two above mentioned methods.  相似文献   

8.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

9.
Free vibration differential equations of motion of one end fixed, the other simply supported and axial loaded beams on elastic soil is solved using differential transform method (DTM), analytical solution and frequency factors are obtained.  相似文献   

10.
In this article, differential transform method (DTM) has been successfully applied to obtain the approximate analytical solutions of the nonlinear homogeneous and non-homogeneous gas dynamic equations, shock wave equation and shallow water equations with fractional order time derivatives. The true beauty of the article is manifested in its emphatic application of Caputo fractional order time derivative on the classical equations with the achievement of the highly accurate solutions by the known series solutions and even for more complicated nonlinear fractional partial differential equations (PDEs). The method is really capable of reducing the size of the computational work besides being effective and convenient for solving fractional nonlinear equations. Numerical results for different particular cases of the equations are depicted through graphs.  相似文献   

11.
In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley–Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply.  相似文献   

12.
In the present paper, effects of entropy generation and nonlinear thermal radiation on Jeffery nanofluid over permeable stretching sheet with partial slip effect were analyzed. The suitable similarity transformation is utilized for the reduction of a set of governing equations, which are solved by using Differential Transformation Method (DTM) with the help of symbolic software MATHEMATICA. The accuracy of impact of slip parameter on coefficient of skin friction by using DTM and numerical method (Shooting technique with fourth-order Runge-Kutta) is illustrated and good agreement is found. Further, velocity, temperature, nanoparticle volume fraction and entropy generation profiles are shown graphically and studied in detail for various physical parameters. We notice that, as slip parameter rises the velocity and entropy generation profile rises. Enhancement in the effect of nonlinear thermal radiation reduces the entropy generation.  相似文献   

13.
Although being powerful, the differential transform method (DTM) yet suffers from a drawback which is the lack of a systematic methodology for derivation of the differential transforms for nonlinear expressions. In the current paper, it is shown that this defect can be overcome with the help of the Adomian polynomials perfectly. The application of the proposed technique in treatment of nonlinear differential equations is well illustrated by a number of examples. In addition, the transformed analogues of some frequent nonlinearities are presented.  相似文献   

14.
The aim of this paper is to investigate the accuracy of the differential transformation method (DTM) for solving the hyperchaotic Rössler system, which is a four-dimensional system of ODEs with quadratic nonlinearities. Comparisons between the DTM solutions and the fourth-order Runge–Kutta (RK4) solutions are made. The DTM scheme obtained from the DTM yields an analytical solution in the form of a rapidly convergent series. The direct symbolic-numeric scheme is shown to be efficient and accurate.  相似文献   

15.
In this article, approximate analytical solution of chaotic Genesio system is acquired by the modified differential transform method (MDTM). The differential transform method (DTM) is mentioned in summary. MDTM can be obtained from DTM applied to Laplace, inverse Laplace transform and Padé approximant. The MDTM is used to increase the accuracy and accelerate the convergence rate of truncated series solution getting by the DTM. Results are given with tables and figures.  相似文献   

16.
We give some convergence results on the generalized Newton method (referred to by some authors as Newton's method) and the chord method when applied to generalized equations. The main results of the paper extend the classical Kantorovich results on Newton's method to (nonsmooth) generalized equations. Our results also extend earlier results on nonsmooth equations due to Eaves, Robinson, Josephy, Pang and Chan. We also propose inner-iterative schemes for the computation of the generalized Newton iterates. These schemes generalize popular iterative methods (Richardson's method, Jacobi's method and the Gauss-Seidel method) for the solution of linear equations and linear complementarity problems and are shown to be convergent under natural generalizations of classical convergence criteria. Our results are applicable to equations involving single-valued functions and also to a class of generalized equations which includes variational inequalities, nonlinear complementarity problems and some nonsmooth convex minimization problems.  相似文献   

17.
The delay time model (DTM) is widely used to model the two-stage failure process and is helpful for developing cost-effective inspection/maintenance plans. Imperfect maintenance is common in practice, but seldom considered in DTM. An improved DTM with imperfect maintenance at inspection has been developed based on the assumption of imperfect inspection maintenance and perfect failure maintenance. The model of the long-run availability for the improved DTM is established. Parameters estimation method and the test for goodness of fit method are given. Numerical simulations are performed to study the influence of imperfect maintenance on the long-run availability and to validate the credibility of the parameters estimation method. The results show that imperfect maintenance will decrease the long-run availability. The existence of the optimal inspection interval regarding the maximum long-run availability is tightly related to the improvement factor, which denotes the maintenance effect. The parameters estimation method proves credible. The maximum likelihood estimations of the reliability parameters can be easily achieved by the Genetic Algorithms (GAs) searching tool.  相似文献   

18.
This paper deals with constructing generalized ‘fractional’ power series representation for solutions of fractional order differential equations. We present a brief review of generalized Taylor's series and generalized differential transform methods. Then, we study the convergence of fractional power series. Our emphasis is to address the sufficient condition for convergence and to estimate the truncated error. Numerical simulations are performed to estimate maximum absolute truncated error when the generalized differential transform method is used to solve non‐linear differential equations of fractional order. The study highlights the power of the generalized differential transform method as a tool in obtaining fractional power series solutions for differential equations of fractional order. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Fractional-order differential equations are interesting for their applications in the construction of mathematical models in finance, materials science or diffusion. In this paper, an application of a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equation is employed for calculating Lyapunov exponents of fractional order systems. It is known that the Lyapunov exponents, first introduced by Oseledec, play a crucial role in characterizing the behaviour of dynamical systems. They can be used to analyze the sensitive dependence on initial conditions and the presence of chaotic attractors. The results reveal that the proposed method is very effective and simple and leads to accurate, approximately convergent solutions.  相似文献   

20.
Global Newton methods for computing solutions of nonlinear systems of equations have recently received a great deal of attention. By using the theory of generalized equations, a homotopy method is proposed to solve problems arising in complementarity and mathematical programming, as well as in variational inequalities. We introduce the concepts of generalized homotopies and regular values, characterize the solution sets of such generalized homotopies and prove, under boundary conditions similar to Smale’s [10], the existence of a homotopy path which contains an odd number of solutions to the problem. We related our homotopy path to the Newton method for generalized equations developed by Josephy [3]. An interpretation of our results for the nonlinear programming problem will be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号