首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient dynamic contact problem of the impact of a plane absolutely rigid punch on an elastic half-plane is considered. The solution of the integral equation of this problem in terms of the unknown Laplace transform of the contact stresses at the punch base is constructed by a special method of successive approximations. The solution of the transient dynamic contact problem is obtained after applying an inverse Laplace transformation to the solution of the integral equation over the whole time range of the impact process, and the law of the penetration of the punch into the elastic medium is determined from a Volterra-type integrodifferential equation. The conditions for the punch to begin to separate from the elastic half-plane are formulated from the solution obtained, and all the stages of the separation process are investigated in detail. The law of the punch motion on the elastic half-plane and the width of the contact area, which varies during the separation, are then determined from the solution of the Volterra-type integrodifferential equation when an additional condition is satisfied.  相似文献   

2.
A solution of the plane problem of the contact interaction of a periodic system of convex punches with an elastic half-plane is given for two forms of boundary conditions: 1) sliding of the punches when there is friction and wear, and 2) the indentation of the punches when there is adhesion. The problem is reduced to a canonical singular integral equation on the arc of a circle in the complex plane. The solution of this equation is expressed in terms of simple algebraic functions of a complex variable, which considerably simplifies its analysis. Asymptotic expressions are obtained for the solution of the problem in the case when the size of the contact area is small compared with the distance between the punches.  相似文献   

3.
The dynamic contact problem of the motion of a flat punch on the boundary of an elastic half-plane is considered. During motion, the punch deforms the elastic half-plane, penetrating it in such a manner that its base remains parallel to the boundary of the half-plane at each instant of time. In movable coordinates connected to the moving punch, the contact problem reduces to solving a two-dimensional integral equation, whose two-dimensional kernel depends on the difference between the arguments for each of the variables. An approximate solution of the integral equation of the problem is constructed in the form of a Neumann series, whose zeroth term is represented in the form of the superposition of the solutions of two-dimensional integral equations on the coordinate semiaxis minus the solution of the integral equation on the entire axis. This approach provides a way to construct the solution of the two-dimensional integral equation of the problem in four velocity ranges of motion of the punch, which cover the entire spectrum of its velocities, as well as to perform a detailed analysis of the special features of the contact stresses and vertical displacements of the free surface on the boundary of the contract area. An approximate method for solving the integral equation, which is based on a special approximation of the integrand of the kernel of the integral equation in the complex plane, is proposed for obtaining effective solutions of the problem that do not contain singular quadratures.  相似文献   

4.
Using a special approximation in the complex plane of the symbol of the kernel of the contact-problem integral equation, an asymptotic form of its solution is constructed which is the fundamental solution of the transient dynamic plane contact problem of the impact of a rigid punch with an elastic half-plane for short interaction times. The proposed approximation of the kernel symbol enables it to be approximated in the complex plane with any previously specified accuracy. Unlike existing approaches [1, 2, etc.], the approximation of the kernel symbol of the integral equation employed here enables the solution of this problem to be obtained in the form of simple formulae not containing singular quadratures.  相似文献   

5.
The plane problem of the sliding contact of a punch with an elastic half-plane is considered. The deformation force resisting the sliding of the punch, caused by the asymmetry of the contact pressure curve, is calculated. It is established that, in order to satisfy the law of conservation of energy, it is necessary to take account of additional tangential forces applied to the end corners of the punch.  相似文献   

6.
Analytical methods for solving problems of the interaction of punches with two-layer bases are described using in the example of the axisymmetric contact problem of the theory of elasticity of the interaction of an absolutely rigid sphere (a punch) with the inner surface of a two-layer spherical base. It is assumed that the outer surface of the spherical base is fixed, that the layers have different elastic constants and are rigidly joined to one anther, and that there are no friction forces in the contact area. Several properties of the integral equation of this problem are investigated, and schemes for solving them using the asymptotic method and the direct collocation method are devised. The asymptotic method can be used to investigate the problem for relatively small layer thicknesses, and the proposed algorithm for solving the problem by the collocation method is applicable for practically any values of the initial parameters. A calculation of the contact stress distribution, the parameters of the contact area, and the relation between the displacement of the punch and the force acting on it is given. The results obtained by these methods are compared, and a comparison with results obtained using Hertz, method is made for the case in which the relative thickness of the layers is large.  相似文献   

7.
Analytical solutions for the problems of an elastic half-space and an elastic half-plane subjected to a distributed normal force are derived in a unified manner using the general form of the linearized surface elasticity theory of Gurtin and Murdoch. The Papkovitch–Neuber potential functions, Fourier transforms and Bessel functions are utilized in the formulation. The newly obtained solutions are general and reduce to the solutions for the half-space and half-plane contact problems based on classical linear elasticity when the surface effects are not considered. Also, existing solutions for the half-space and half-plane contact problems based on simplified versions of Gurtin and Murdoch’s surface elasticity theory are recovered as special cases of the current solutions. By applying the new solutions directly, Boussinesq’s flat-ended punch problem, Hertz’s spherical punch problem and a conical punch problem are solved, which lead to depth-dependent hardness formulas different from those based on classical elasticity. The numerical results reveal that smoother elastic fields and smaller displacements are predicted by the current solutions than those given by the classical elasticity-based solutions. Also, it is shown that the out-of-plane displacement and stress components strongly depend on the residual surface stress. In addition, it is found that the new solutions based on the surface elasticity theory predict larger values of the indentation hardness than the solutions based on classical elasticity.  相似文献   

8.
The interaction of two punches, which are elliptic in plan, on the face of an elastic wedge is investigated in a three-dimensional formulation for different types of boundary conditions on the other face. The wedge material is assumed to be incompressible. An asymptotic solution is obtained for punches which are relatively distant from one another and from the edge of the wedge. For the case when the punches are arranged relatively close to the edge of the wedge (or reach the edge, the contact area is unknown) the numerical method of boundary integral equations is used. The mutual effect of the punches is estimated by means of calculations. The asymptotic solution of the generalized Galin problem, concerning the effect of a concentrated force applied on the edge of the three-dimensional wedge on the contact pressure distribution under a circular punch relatively far from the edge, is obtained.  相似文献   

9.
A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.  相似文献   

10.
The plane contact problem of elasticity theory on the interaction when there are friction forces in the contact area of an absolutely rigid cylinder (punch) with an internal surface of a cylindrical base, consisting of two circular cylindrical layers rigidly connected to one another and with an elastic space, is considered. The layers and space have different elastic constants. A vertical force and a counterclockwise torque, act on the punch, and the punch – base system is in a state of limiting equilibrium,. An exact integral equation of the first kind with a kernel represented in an explicit analytical form, is obtained for the first time for this problem using analytical calculation programs. The main properties of the kernel of the integral equation are investigated, and it is shown that the numerator and denominator of the kernel symbols can be represented in the form of polynomials in products of the powers of the moduli of the displacement of the layers and the half-space. A solution of the integral equation is constructed by the direct collocation method, which enables the solution of the problem to be obtained for practically any values of the initial parameters. The contact stress distributions, the dimensions of the contact area, the interconnection between the punch displacement and the forces and torques acting on it are calculated as a function of the geometrical and mechanical parameters of the layers and the space. The results of the calculations in special cases are compared with previously known results.  相似文献   

11.
The problem of optimizing the pressure distribution under a rigid punch, which interacts without friction with an elastic medium filling a half-space, is investigated. The shape of the punch is taken as the initial variable of the design, while the root mean square deviation of the pressure distribution, which occurs under the punch, from a certain specified distribution, plays the role of the minimized functional. The values of the total forces and moments, applied to the punch, are assumed to be given, which leads to limitations imposed on the pressure distribution by the equilibrium conditions. It is shown that the optimization problem allows of decomposition into two successively solvable problems. The first problem consists of finding the pressure distribution which makes the optimized quality functional a minimum. The second problem is reduced to the problem of obtaining directly the optimum shape of the punch that yields the pressure distribution found. The optimization problem is investigated analytically for punches of different shape in plan. The optimum shapes are given in explicit form for punches with rectangular bases.  相似文献   

12.
Static rigid 2-D indentation of a linearly elastic half-plane in the presence of Coulomb friction which reverses its sign along the contact length is studied. The solution approach lies within the context of the mathematical theory of elastic contact mechanics. A rigid punch, having an unsymmetrical profile with respect to its apex and no concave regions, both slides over and indents slowly the surface of the deformable body. Both a normal and a tangential force may, therefore, be exerted on the punch. In such a situation, depending upon the punch profile and the relative magnitudes of the two external forces, a point in the contact zone may exist at which the surface friction changes direction. Moreover, this point of sign reversal may not coincide, in general, with the indentor's apex. This position and the positions of the contact zone edges can be determined only by first constructing a solution form containing the three problem's unspecified lengths, and then solving numerically a system of non-linear equations containing integrals not available in closed form.The mathematical procedure used to construct the solution deals with the Navier-Cauchy partial differential equations (plane-strain elastostatic field equations) supplied with boundary conditions of a mixed type. We succeed in formulating a second-kind Cauchy singular integral equation and solving it exactly by analytic-function theory methods.Representative numerical results are presented for two indentor profiles of practical interest—the parabola and the wedge.  相似文献   

13.
This paper investigates the two-dimensional sliding frictional contact of a piezoelectric half-plane in the plane strain state under the action of a rigid flat or a triangular punch. It is assumed that the punch is a perfect electrical conductor with a constant electric potential. By using the Fourier integral transform technique and the superposition theorem, the problem is reduced to a pair of coupled Cauchy singular integral equations and then is numerically solved to determine the unknown contact pressure and surface electric charge distribution. The effects of the friction coefficient and electro-mechanical loads on the normal contact stress, normal electric displacement, in-plane stress and in-plane electric displacement are discussed in detail. It is found that the friction coefficient has a significant effect on the electro-mechanical sliding frictional contact behaviors of the piezoelectric materials.  相似文献   

14.
The contact problem for an arbitrary punch acting on a transversely isotropic elastic layer bonded to a rigid foundation is solved by the generalized images method developed by the author earlier. The problem is reduced to that of an electrostatic problem of infinite row of coaxial charged disks in the shape of the domain of contact. The solution can be obtained by the method of iteration, collocations or any other standard procedure for solving integral equations. Exact inversion can be obtained in the case of a circular domain of contact. The mean value theorem can be used for estimation of the resultant force and tilting moment acting on a punch of arbitrary shape and circular domain of contact. A limiting case of general solution gives the solution for an isotropic layer.  相似文献   

15.
The plane contact problem of a stamp impressed into an elastic half-plane containing arbitrarily arranged rectilinear subsurface cracks is formulated and investigated by asymptotic methods. Partial or total overlapping of the crack edges is assumed. The problem reduces to a system of linear singular integrodifferential equations with side conditions in the form of equalities and inequalities. An analytic solution of the problem is obtained in the form of asymptotic power series /1/ in the relative dimension of the greatest crack. Dependences of the first terms of the asymptotic expansions of the desired functions on the mutual location of the cracks and the contact domains, the pressure and friction stress distributions, and the crack size and orientation are determined. Numerical results are presented.

Analysis of the influence of the stress-free boundary of the half-plane on the state of stress and strain of the elastic material near the cracks is presented in /2, 3/. The problem of a crack in an elastic plane whose edges overlap partially is also examined in /3/ by numerical methods.  相似文献   


16.
The contact problem for an arbitrary punch acting on a transversely isotropic elastic layer bonded to a rigid foundation is solved by the generalized images method developed by the author earlier. The problem is reduced to that of an electrostatic problem of infinite row of coaxial charged disks in the shape of the domain of contact. The solution can be obtained by the method of iteration, collocations or any other standard procedure for solving integral equations. Exact inversion can be obtained in the case of a circular domain of contact. The mean value theorem can be used for estimation of the resultant force and tilting moment acting on a punch of arbitrary shape and circular domain of contact. A limiting case of general solution gives the solution for an isotropic layer. (Received: August 11, 2003)  相似文献   

17.
The problem of the harmonic sheat oscillations of an elastic strip, coupled to an elastic half-space is considered. Using the method of integral transformations, the problem is reduced to a singular integral equation in the contact stresses in the region where the strip and the half-space are coupled when there are two fixed singularities at points bounding the integration intervals. One of the main results of this paper is the method of solving this equation numerically, taking into account the true singularity of the solution and based on the use of special quadrature formulae for singular integrals. The approximate solution obtained provides the possibility of numerically investigating the effect of the oscillation frequency and the ratio of the elastic constants of the strip and the half-space on the stress distribution in the contact area.  相似文献   

18.
A piecewise-homogeneous elastic orthotropic plate, reinforced with a finite inclusion, which meets the interface at a right angle and is loaded with shear forces, is considered. The contact stresses along the contact line are determined, and the behaviour of the contact stresses in the neighbourhood of singular points is established. By using the methods of the theory of analytic functions, the problem is reduced to a singular integro-differential equation in a finite section. Using an integral transformation, a Riemann problem is obtained, the solution of which is presented in explicit form.  相似文献   

19.
A piecewise-homogenous elastic plate, reinforced with a semi-infinite inclusion, which intersects the interface at a right angle and is loaded with shear forces is considered. The contact stresses along the contact line are determined and the behaviour of the contact stresses in the neighbourhood of singular points is established. Using methods of the theory of analytical functions and integral transformations the problem is reduced to a system of singular integro-differential equations on the semi-axis. The solution is presented in explicit form.  相似文献   

20.
The axisymmetric problem of the contact interaction of a punch of polynomial profile and an elastic half-space when there is friction and partial adhesion in the contact area is considered. Using the Wiener–Hopf method the problem is reduced to an infinite system of algebraic Poincare–Koch equations, the solution of which is obtained in series. The radii of the contact area and of the adhesion zone, the distribution of the contact pressures and the indentation of the punch are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号