首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A kind of function-valued Padé-type approximant via the formal orthogonal polynomials (FPTAVOP) is introduced on the polynomial space and an algorithm is sketched by means of the formal orthogonal polynomials. This method can be applied to approximate characteristic values and the corresponding characteristic function of Fredholm integral equation of the second kind. Moreover, theoretical analyses show that FPTAVOP method is the most effective one for accelerating the convergence of a sequence of functions. In addition, a typical numerical example is presented to illustrate when the estimates of characteristic value and characteristic function by using this new method are more accurate than other methods.  相似文献   

2.
This paper intended to offer an architecture of artificial neural networks (NNs) for finding approximate solution of a second kind linear Fredholm integral equations system. For this purpose, first we substitute the N-th truncation of the Taylor expansion for unknown functions in the origin system. By applying the suggested neural network for adjusting the real coefficients of given expansions in resulting system. The proposed NN is a two-layer feed-back neural network such that it can get a initial vector and then calculates it’s corresponding output vector. In continuance, a cost function is defined by using output vector and the target outputs. Consequently, the reported NN using a learning algorithm that based on the gradient descent method, will adjust the coefficients in given Taylor series. Eventually, we have showed this method in comparison with existing numerical methods such as trapezoidal quadrature rule provides solutions with good generalization and high accuracy. The proposed method is illustrated by several examples with computer simulations.  相似文献   

3.
The main purpose of this article is to describe a numerical scheme for solving two-dimensional linear Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on radial basis functions (RBFs) constructed on a set of disordered data. The proposed method does not require any background mesh or cell structures, so it is meshless and consequently independent of the geometry of domain. This approach reduces the solution of the two-dimensional integral equation to the solution of a linear system of algebraic equations. The error analysis of the method is provided. The proposed scheme is also extended to linear mixed Volterra–Fredholm integral equations. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the new technique.  相似文献   

4.
By introducing a bivariate matrix-valued linear functional on the scalar polynomial space, a general two-dimensional (2-D) matrix Padé-type approximant (BMPTA) in the inner product space is defined in this paper. The coefficients of its denominator polynomials are determined by taking the direct inner product of matrices. The remainder formula is developed and an algorithm for the numerator polynomials is presented when the generating polynomials are given in advance. By means of the Hankel-like coefficient matrix, a determinantal expression of BMPTA is presented. Moreover, to avoid the computation of the determinants, two efficient recursive algorithms are proposed. At the end the method of BMPTA is applied to partial realization problems of 2-D linear systems.  相似文献   

5.
A Nyström method is proposed for solving Fredholm integral equations equivalent to boundary value problems of order s with complete differential equations. The stability and the convergence of the proposed procedure are proved. Some numerical examples are provided in order to illustrate the accuracy of the method and to compare the procedure with some other ones given in the literature.  相似文献   

6.
This paper is concerned to derive the main theorem of spectral relationships of Volterra–Fredholm integral equation (V‐FIE) of the first kind in the space L2[?1,1]×C[0,T], ?1?x?1, 0?t?T<1. The Fredholm integral (FI) term is considered in position and its kernel takes a logarithmic form multiplying by a continuous function. While Volterra integral (VI) term in time with a positive continuous kernel. Many important special and new cases can be established from the main theorem. Moreover, we use it to solve V‐FIE of the second kind in the same space. The numerical results are computed and the error is calculated using Maple 12. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we present a fixed point theorem of Banach type in modular space. We give an application of this result to a nonlinear integral equation in Musielak-Orlicz space.

  相似文献   


8.
In this paper we present a fixed point theorem of Banach type in modular spaces. Also, we give some applications of this result to a nonlinear integral equation in Musielak-Orlicz space.

  相似文献   


9.
In this paper, the complex method is used to derive meromorphic solutions to some algebraic differential equations related Painlevé equation IV, and then we illustrate our main result by some computer simulations. By the application of our result, we obtain meromorphic solutions of a nonlinear evolution equation. We can apply the idea of this study for other nonlinear evolution equations in mathematical physics.  相似文献   

10.
We study the weighted boundedness of the multi‐dimensional Hardy‐type and singular operators in the generalized Morrey spaces , defined by an almost increasing function φ(r) and radial type weights. We obtain sufficient conditions, in terms of numerical characteristics, that is, index numbers of the weight functions and the function φ. In relation with the wide usage of singular integral equations in applications, we show how the solvability of such equations in the generalized Morrey spaces depends on the main characteristics of the space, which allows to better control both the singularities and regularity of solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A Nyström method is proposed for solving Fredholm integral equations equivalent to special boundary value problems of order 2s. The stability and the convergence of the proposed procedure is proved. Some numerical examples are provided in order to illustrate the accuracy of the method.  相似文献   

12.
We consider the diffraction problem for an elastic wave on a periodic set of defects located at the interface of stratified media. We reduce the mentioned problem to a pair summatory functional equation with respect to coefficients of the expansion of the desired wave by quasiperiodic waves (the Floquet waves). Using the method of integral identities, we reduce the pair equation to a regular infinite system of linear equations. One can solve this system by the truncation method. We prove that the integral identity is the necessary and sufficient condition for the solvability of the auxiliary overspecified problem for a system of equations in a half-plane in the elasticity theory. We obtain integral equations of the second kind which are equivalent to the initial diffraction problem.  相似文献   

13.
The article presents a new general solution to a loaded differential equation and describes its properties. Solving a linear boundary value problem for loaded differential equation is reduced to the solving a system of linear algebraic equations with respect to the arbitrary vectors of general solution introduced. The system's coefficients and right sides are computed by solving the Cauchy problems for ordinary differential equations. Algorithms of constructing a new general solution and solving a linear boundary value problem for loaded differential equation are offered. Linear boundary value problem for the Fredholm integro‐differential equation is approximated by the linear boundary value problem for loaded differential equation. A mutual relationship between the qualitative properties of original and approximate problems is obtained, and the estimates for differences between their solutions are given. The paper proposes numerical and approximate methods of solving a linear boundary value problem for the Fredholm integro‐differential equation and examines their convergence, stability, and accuracy.  相似文献   

14.
In this article, we present a strategy of using rectangular and triangular Bézier surface patches for nonelement representation of 3D boundary geometries for problems of linear elasticity. The boundary generated in this way is directly incorporated in the parametric integral equation system (PIES), which has been developed by the authors. The boundary values on each surface patch are approximated by Lagrange polynomials. Three illustrative examples are presented to confirm the effectiveness of the proposed boundary representation in connection with PIES and to show good accuracy of numerical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 51–79, 2018  相似文献   

15.
In this article, we discuss a recently introduced function, Ni(x), to which we will refer as the Nield-Kuznetsov function. This function is attractive in the solution of inhomogeneous Airy’s equation. We derive and document some elementary properties of this function and outline its application to Airy’s equation subject to initial conditions. We introduce another function, Ki(x), that arises in connection with Ni(x) when solving Airy’s equation with a variable forcing function. In Appendix A, we derive a number of properties of both Ni(x) and Ki(x), their integral representation, ascending and asymptotic series representations. We develop iterative formulae for computing all derivatives of these functions, and formulae for computing the values of the derivatives at x = 0. An interesting finding is the type of differential equations Ni(x) satisfies. In particular, it poses itself as a solution to Langer’s comparison equation.  相似文献   

16.
17.
In this paper, the linear nonhomogeneous integral equation of H-functions is considered to find a new form of H-function as its solution. The Wiener-Hopf technique is used to express a known function into two functions with different zones of analyticity. The linear nonhomogeneous integral equation is thereafter expressed into two different sets of functions having the different zones of regularity. The modified form of Liouville's theorem is thereafter used, Cauchy's integral formulae are used to determine functional representation over the cut region in a complex plane. The new form of H-function is derived both for conservative and nonconservative cases. The existence of solution of linear nonhomogeneous integral equations and its uniqueness are shown. For numerical calculation of this new H-function, a set of useful formulae are derived both for conservative and nonconservative cases.  相似文献   

18.
19.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号