首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
《Journal of Complexity》2000,16(3):572-602
Many applications modeled by polynomial systems have positive dimensional solution components (e.g., the path synthesis problems for four-bar mechanisms) that are challenging to compute numerically by homotopy continuation methods. A procedure of A. Sommese and C. Wampler consists in slicing the components with linear subspaces in general position to obtain generic points of the components as the isolated solutions of an auxiliary system. Since this requires the solution of a number of larger overdetermined systems, the procedure is computationally expensive and also wasteful because many solution paths diverge. In this article an embedding of the original polynomial system is presented, which leads to a sequence of homotopies, with solution paths leading to generic points of all components as the isolated solutions of an auxiliary system. The new procedure significantly reduces the number of paths to solutions that need to be followed. This approach has been implemented and applied to various polynomial systems, such as the cyclic n-roots problem.  相似文献   

2.
Let Z be a two dimensional irreducible complex component of the solution set of a system of polynomial equations with real coefficients in N complex variables. This work presents a new numerical algorithm, based on homotopy continuation methods, that begins with a numerical witness set for Z and produces a decomposition into 2-cells of any almost smooth real algebraic surface contained in Z. Each 2-cell (a face) has a generic interior point and a boundary consisting of 1-cells (edges). Similarly, the 1-cells have a generic interior point and a vertex at each end. Each 1-cell and each 2-cell has an associated homotopy for moving the generic interior point to any other point in the interior of the cell, defining an invertible map from the parameter space of the homotopy to the cell. This work draws on previous results for the curve case. Once the cell decomposition is in hand, one can sample the 2-cells and 1-cells to any resolution, limited only by the computational resources available.  相似文献   

3.
We present two algorithms that compute the Newton polytope of a polynomial f defining a hypersurface \({\mathcal{H}}\) in \({\mathbb{C}^n}\) using numerical computation. The first algorithm assumes that we may only compute values of f—this may occur if f is given as a straight-line program, as a determinant, or as an oracle. The second algorithm assumes that \({\mathcal{H}}\) is represented numerically via a witness set. That is, it computes the Newton polytope of \({\mathcal{H}}\) using only the ability to compute numerical representatives of its intersections with lines. Such witness set representations are readily obtained when \({\mathcal{H}}\) is the image of a map or is a discriminant. We use the second algorithm to compute a face of the Newton polytope of the Lüroth invariant, as well as its restriction to that face.  相似文献   

4.
Given a polynomial system f, a fundamental question is to determine if f has real roots. Many algorithms involving the use of infinitesimal deformations have been proposed to answer this question. In this article, we transform an approach of Rouillier, Roy, and Safey El Din, which is based on a classical optimization approach of Seidenberg, to develop a homotopy based approach for computing at least one point on each connected component of a real algebraic set. Examples are presented demonstrating the effectiveness of this parallelizable homotopy based approach.  相似文献   

5.
We consider the problem of reconstructing an even polynomial potential from one set of spectral data of a Sturm-Liouville problem. We show that we can recover an even polynomial of degree 2m from m+1 given Taylor coefficients of the characteristic function whose zeros are the eigenvalues of one spectrum. The idea here is to represent the solution as a power series and identify the unknown coefficients from the characteristic function. We then compute these coefficients by solving a nonlinear algebraic system, and provide numerical examples at the end. Because of its algebraic nature, the method applies also to non self-adjoint problems.  相似文献   

6.
Elimination is a basic algebraic operation which geometrically corresponds to projections. This article describes using the numerical algebraic geometric concept of witness sets to compute the projection of an algebraic set. The ideas described in this article apply to computing the image of an algebraic set under any linear map.  相似文献   

7.
We initiate the study of classical knots through the homotopy class of the nth evaluation map of the knot, which is the induced map on the compactified n-point configuration space. Sending a knot to its nth evaluation map realizes the space of knots as a subspace of what we call the nth mapping space model for knots. We compute the homotopy types of the first three mapping space models, showing that the third model gives rise to an integer-valued invariant. We realize this invariant in two ways, in terms of collinearities of three or four points on the knot, and give some explicit computations. We show this invariant coincides with the second coefficient of the Conway polynomial, thus giving a new geometric definition of the simplest finite-type invariant. Finally, using this geometric definition, we give some new applications of this invariant relating to quadrisecants in the knot and to complexity of polygonal and polynomial realizations of a knot.  相似文献   

8.
The classical “computation” methods in Algebraic Topology most often work by means of highly infinite objects and in fact are not constructive. Typical examples are shown to describe the nature of the problem. The Rubio-Sergeraert solution for Constructive Algebraic Topology is recalled. This is not only a theoretical solution: the concrete computer program Kenzo has been written down which precisely follows this method. This program has been used in various cases, opening new research subjects and producing in several cases significant results unreachable by hand. In particular the Kenzo program can compute the first homotopy groups of a simply connected arbitrary simplicial set.  相似文献   

9.
A new numerical approach to compute all real roots of a system of two bivariate polynomial equations over a given box is described. Using the Bernstein–Bézier representation, we compute the best linear approximant and the best quadratic approximant of the two polynomials with respect to the L 2 norm. Using these approximations and bounds on the approximation errors, we obtain a fat line bounding the zero set first of the first polynomial and a fat conic bounding the zero set of the second polynomial. By intersecting these fat curves, which requires solely the solution of linear and quadratic equations, we derive a reduced subbox enclosing the roots. This algorithm is combined with splitting steps, in order to isolate the roots. It is applied iteratively until a certain accuracy is obtained. Using a suitable preprocessing step, we prove that the convergence rate is 3 for single roots. In addition, experimental results indicate that the convergence rate is superlinear (1.5) for double roots.  相似文献   

10.
We overview numerous algorithms in computational D-module theory together with the theoretical background as well as the implementation in the computer algebra system Singular. We discuss new approaches to the computation of Bernstein operators, of logarithmic annihilator of a polynomial, of annihilators of rational functions as well as complex powers of polynomials. We analyze algorithms for local Bernstein–Sato polynomials and also algorithms, recovering any kind of Bernstein–Sato polynomial from partial knowledge of its roots. We address a novel way to compute the Bernstein–Sato polynomial for an affine variety algorithmically. All the carefully selected nontrivial examples, which we present, have been computed with our implementation. We also address such applications as the computation of a zeta-function for certain integrals and revealing the algebraic dependence between pairwise commuting elements.  相似文献   

11.
We give a new numerical method to compute the eigenstructure—i.e. the zero structure, the polar structure, and the left and right null space structure—of a polynomial matrix P(λ). These structural elements are of fundamental importance in several systems and control problems involving polynomial matrices. The approach is more general than previous numerical methods because it can be applied to an arbitrary m × n polynomial matrix P(λ) with normal rank r smaller than m and/or n. The algorithm is then shown to compute the structure of the left and right null spaces of P(λ) as well. The speed and accuracy of this new approach are also discussed.  相似文献   

12.
The governing equation locating component centers in the degree-n bifurcation set is a polynomial with a very high, degree and its root-finding lacks numerical accuracy. The equation is transformed to have its degree reduced by a factor (n?1). Newton's method applied to the transformed equation improves the accuracy with properly chosen initial values. The numerical implementation is done with Maple V using a large number of computational precision digits. Many cases are studied for 2≤n≤25 and show a remarkably improved computation.  相似文献   

13.
Generalized eigenvalue problems can be considered as a system of polynomials. The homotopy continuation method is used to find all the isolated zeros of the polynomial system which corresponds to the eigenpairs of the generalized eigenvalue problem. A special homotopy is constructed in such a way that there are exactly n distinct smooth curves connecting trivial solutions to desired eigenpairs. Since the curves followed by general homotopy curve following scheme are computed independently of one another, the algorithm is a likely candidate for exploiting the advantages of parallel processing to the generalized eigenvalue problems.  相似文献   

14.
Performance evaluation of complex systems is a critical issue and bounds computation provides confidence about service quality, reliability, etc. of such systems. The stochastic ordering theory has generated a lot of works on bounds computation. Maximal lower and minimal upper bounds of a Markov chain by a st-monotone one exist and can be efficiently computed. In the present work, we extend simultaneously this last result in two directions. On the one hand, we handle the case of a maximal monotone lower bound of a family of Markov chains where the coefficients are given by numerical intervals. On the other hand, these chains are sub-chains associated to sub-stochastic matrices. We prove the existence of this maximal bound and we provide polynomial time algorithms to compute it both for discrete and continuous Markov chains. Moreover, it appears that the bounding sub-chain of a family of strictly sub-stochastic ones is not necessarily strictly sub-stochastic. We establish a characterization of the families of sub-chains for which these bounds are strictly sub-stochastic. Finally, we show how to apply these results to a classical model of repairable system. A forthcoming paper will present detailed numerical results and comparison with other methods.  相似文献   

15.
The Maslov dequantization allows one to interpret the classical Gräffe-Lobachevski method for calculating the roots of polynomials in dimension one as a homotopy procedure for solving a certain system of tropical equations. As an extension of this analogy to systems of n algebraic equations in dimension n, we introduce a tropical system of equations whose solution defines the structure and initial iterations of the homotopy method for calculating all complex roots of a given algebraic system. This method combines the completeness and the rigor of the algebraicgeometrical analysis of roots with the simplicity and the convenience of its implementation, which is typical of local numerical algorithms.  相似文献   

16.
Intersection problems are fundamental in computational geometry, geometric modeling and design and manufacturing applications, and can be reduced to solving polynomial systems. This paper introduces two homotopy methods, i.e. polyhedral homotopy method and linear homotopy method, to compute the intersections of two plane rational parametric curves. Extensive numerical examples show that computing curve intersection by homotopy methods has better accuracy, efficiency and robustness than by the Ehrlich-Aberth iteration method. Finally, some other applications of homotopy methods are also presented.  相似文献   

17.
《Journal of Complexity》2005,21(4):593-608
Recently we developed a diagonal homotopy method to compute a numerical representation of all positive dimensional components in the intersection of two irreducible algebraic sets. In this paper, we rewrite this diagonal homotopy in intrinsic coordinates, which reduces the number of variables, typically in half. This has the potential to save a significant amount of computation, especially in the iterative solving portion of the homotopy path tracker. Three numerical experiments all show a speedup of about a factor two.  相似文献   

18.
许多科学与工程领域,我们经常需要求混合三角多项式方程组的全部解.一般来说,混合三角多项式方程组可以通过变量替换及增加二次多项式转化为多项式方程组,进而利用数值方法进行求解,但这种转化会增大问题的规模从而增加计算量.在本文中,我们不将问题转化,考虑利用直接同伦方法求解,并给出基于GBQ方法构造的初始方程组及同伦定理的证明.数值实验结果表明我们构造的直接同伦方法较已有的直接同伦方法更加有效.  相似文献   

19.
Intersection problems are fundamental in computational geometry, geometric modeling and design and manufacturing applications, and can be reduced to solving polynomial systems. This paper introduces two homotopy methods, i.e. polyhedral homotopy method and linear homotopy method, to compute the intersections of two plane rational parametric curves. Extensive numerical examples show that computing curve intersection by homotopy methods has better accuracy, efficiency and robustness than by the Ehrlich–Aberth iteration method. Finally, some other applications of homotopy methods are also presented.  相似文献   

20.
Summary A natural class of homotopy methods for solving polynomial systems is considered. It is shown that at least one solution from each connected component of the solution set is obtained. This generalizes the results of previous papers which concentrated on isolated solutions, i.e. connected components with one single point. The number of solution paths ending in a connected component is independent of the particular homotopy in use and defines in a natural way the multiplicity of the connected component. A few numerical experiments illustrate the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号