首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the paper, a reproducing kernel method of solving singular integral equations (SIE) with cosecant kernel is proposed. For solving SIE, difficulties lie in its singular term. In order to remove singular term of SIE, an equivalent transformation is made. Compared with known investigations, its advantages are that the representation of exact solution is obtained in a reproducing kernel Hilbert space and accuracy in numerical computation is higher. On the other hand, the representation of reproducing kernel becomes simple by improving the definition of traditional inner product and requirements for image space of operators are weakened comparing with traditional reproducing kernel method. The final numerical experiments illustrate the method is efficient.  相似文献   

2.
In this paper we consider a class of second-kind singular integral equations with Hilbert kernel on the unit circumference. We theoretically substantiate a solution method based on an interpolation-type operator.  相似文献   

3.
In this paper, the weakly singular Volterra integral equations with an infinite set of solutions are investigated. Among the set of solutions only one particular solution is smooth and all others are singular at the origin. The numerical solutions of this class of equations have been a difficult topic to analyze and have received much previous investigation. The aim of this paper is to present a numerical technique for giving the approximate solution to the only smooth solution based on reproducing kernel theory. Applying weighted integral, we provide a new definition for reproducing kernel space and obtain reproducing kernel function. Using the good properties of reproducing kernel function, the only smooth solution is exactly expressed in the form of series. The n-term approximate solution is obtained by truncating the series. Meanwhile, we prove that the derivative of approximation converges to the derivative of exact solution uniformly. The final numerical examples compared with other methods show that the method is efficient.  相似文献   

4.
In this paper, a new method for the approximate solution of linear singular integral equations defined on smooth closed curves is proposed and justified.  相似文献   

5.
In [1], [2], [3], [4], [5], [6], [7] and [8], it is very difficult to get reproducing kernel space of problem (1). This paper is concerned with a new algorithm for giving the analytical and approximate solutions of a class of fourth-order in the new reproducing kernel space. The numerical results are compared with both the exact solution and its n-order derived functions in the example. It is demonstrated that the new method is quite accurate and efficient for fourth-order problems.  相似文献   

6.
In this article, by introducing characteristic singular integral operator and associate singular integral equations (SIEs), the authors discuss the direct method of solution for a class of singular integral equations with certain analytic inputs. They obtain both the conditions of solvability and the solutions in closed form. It is noteworthy that the method is different from the classical one that is due to Lu.  相似文献   

7.
An approach for solving Fredholm integral equations of the first kind is proposed for in a reproducing kernel Hilbert space (RKHS). The interest in this problem is strongly motivated by applications to actual prospecting. In many applications one is puzzled by an ill-posed problem in space C[a,b] or L2[a,b], namely, measurements of the experimental data can result in unbounded errors of solutions of the equation. In this work, the representation of solutions for Fredholm integral equations of the first kind is obtained if there are solutions and the stability of solutions is discussed in RKHS. At the same time, a conclusion is obtained that approximate solutions are also stable with respect to or L2 in RKHS. A numerical experiment shows that the method given in the work is valid.  相似文献   

8.
A space , which is proved to be a reproducing kernel space with simple reproducing kernel, is defined. The expression of its reproducing kernel function is given. Subsequently, a class of linear Volterra integral equation (VIE) with weakly singular kernel is discussed in the new reproducing kernel space. The reproducing kernel method of linear operator equation Au=f, which request the image space of operator A is and operator A is bounded, is improved. Namely, the request for the image space is weakened to be L2[a,b], and the boundedness of operator A is also not required. As a result, the exact solution of the equation is obtained. The numerical experiments show the efficiency of our method.  相似文献   

9.
In this work, we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels. Particularly, we consider the case when the underlying solutions are sufficiently smooth. In this case, the proposed method leads to a fully discrete linear system. We show that the fully discrete integral operator is stable in both infinite and weighted square norms. Furthermore, we establish that the approximate solution arrives at an optimal convergence order under the two norms. Finally, we give some numerical examples, which confirm the theoretical prediction of the exponential rate of convergence.  相似文献   

10.
This paper investigates the forced Duffing equation with integral boundary conditions. Its approximate solution is developed by combining the homotopy perturbation method (HPM) and the reproducing kernel Hilbert space method (RKHSM). HPM is based on the use of the traditional perturbation method and the homotopy technique. The HPM can reduce nonlinear problems to some linear problems and generate a rapid convergent series solution in most cases. RKHSM is also an analytical technique, which can solve powerfully linear boundary value problems. Therefore, the forced Duffing equation with integral boundary conditions can be solved using advantages of these two methods. Two numerical examples are presented to illustrate the strength of the method.  相似文献   

11.
In this article,the authors discuss a kind of modified singular integral equations on a disjoint union of closed contours or a disjoint union of open arcs.The authors introduce some singular integral operators associated with this kind of singular integral equations,and obtain some useful properties for them.An operatorial approach is also given together with some illustrated examples.  相似文献   

12.
13.
In this paper, Sinc-collocation method is used to approximate the solution of weakly singular nonlinear Fredholm integral equations of the first kind. Some of the important advantages of this method are rate of convergence of an approximate solution and simplicity for performing even in the presence of singularities. The convergence analysis of the proposed method is proved by preparing the theorems which show the errors decay exponentially and guarantee the applicability of that. Finally, several numerical examples are considered to show the capabilities, validity, and accuracy of the numerical scheme.  相似文献   

14.
This paper investigates the numerical solutions of singular second order three-point boundary value problems using reproducing kernel Hilbert space method. It is a relatively new analytical technique. The solution obtained by using the method takes the form of a convergent series with easily computable components. However, the reproducing kernel Hilbert space method cannot be used directly to solve a singular second order three-point boundary value problem, so we convert it into an equivalent integro-differential equation, which can be solved using reproducing kernel Hilbert space method. Four numerical examples are given to demonstrate the efficiency of the present method. The numerical results demonstrate that the method is quite accurate and efficient for singular second order three-point boundary value problems.  相似文献   

15.
** Email: alok{at}math.iisc.ernet.in Direct function theoretic methods are developed to handle twoweakly singular integral equations with their kernels havinglogarithmic singularity. The present methods avoid the occurrenceof higher-order (or strong) singularities, like the Cauchy typesingularity in the representation of the solutions of such integralequations.  相似文献   

16.
In this paper, exact solutions of the characteristic and dominant equation with Cauchy kernel on the real line are presented. Next, trigonometric polynomials are used to derive approximate solutions of these equations. Moreover, estimations of errors of the approximated solutions are presented and proved.  相似文献   

17.
18.
This paper presents a new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems. It is a relatively new analytical technique. The solution obtained by using the method takes the form of a convergent series with easily computable components. This paper will present a numerical comparison between our method and other methods for solving an open fourth-order boundary value problem presented by Scott and Watts. The method is also applied to a nonlinear fourth-order boundary value problem. The numerical results demonstrate that the new method is quite accurate and efficient for fourth-order boundary value problems.  相似文献   

19.
In [1], [2], [3], [4], [5], [6] and [7], it is very difficult to deal with initial boundary value conditions. In this paper, we give a new method to deal with boundary value conditions, the main contribution of this paper is to put mixed boundary value conditions into reproducing kernel Hilbert space. The numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method indicate the method is simple and effective.  相似文献   

20.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号