首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of sufficient conditions consisting of systems of linear partial differential equations is obtained which guarantees that the Wronskian determinant solves the (3 + 1)-dimensional Jimbo-Miwa equation in the bilinear form. Upon solving the linear conditions, the resulting Wronskian formulations bring solution formulas, which can yield rational solutions, solitons, negatons, positons and interaction solutions.  相似文献   

2.
A system of linear conditions is presented for Wronskian and Grammian solutions to a (3+1)-dimensional generalized vcKP equation.The formulations of these solutions require a constraint on variable coefficients.  相似文献   

3.
The symmetry of the (3 + 1)-dimensional partial differential equation has been derived via a direct symmetry method and proved to be infinite dimensional non-Virasoro type symmetry algebra. Many kinds of symmetry reductions have been obtained, including the (2 + 1)-dimensional ANNV equation and breaking soliton equation. And some new soliton solutions and complex solutions are obtained due to the Riccati equation method and symbolic computation.  相似文献   

4.
In this paper, the nonlinear matrix equation X + AXqA = Q (q > 0) is investigated. Some necessary and sufficient conditions for existence of Hermitian positive definite solutions of the nonlinear matrix equations are derived. An effective iterative method to obtain the positive definite solution is presented. Some numerical results are given to illustrate the effectiveness of the iterative methods.  相似文献   

5.
In this article, we consider common Re-nnd and Re-pd solutions of the matrix equations AX = C and XB = D with respect to X, where A, B, C and D are given matrices. We give necessary and sufficient conditions for the existence of common Re-nnd and Re-pd solutions to the pair of the matrix equations and derive a representation of the common Re-nnd and Re-pd solutions to these two equations when they exist. The presented examples show the advantage of the proposed approach.  相似文献   

6.
Nonlinear matrix equation Xs + AXtA = Q, where A, Q are n × n complex matrices with Q Hermitian positive definite, has widely applied background. In this paper, we consider the Hermitian positive definite solutions of this matrix equation with two cases: s ? 1, 0 < t ? 1 and 0 < s ? 1, t ? 1. We derive necessary conditions and sufficient conditions for the existence of Hermitian positive definite solutions for the matrix equation and obtain some properties of the solutions. We also propose iterative methods for obtaining the extremal Hermitian positive definite solution of the matrix equation. Finally, we give some numerical examples to show the efficiency of the proposed iterative methods.  相似文献   

7.
This paper employs the theory of planar dynamical systems and undetermined coefficient method to study travelling wave solutions of the dissipative (2 + 1)-dimensional AKNS equation. By qualitative analysis, global phase portraits of the dynamic system corresponding to the equation are obtained under different parameter conditions. Furthermore, the relations between the properties of travelling wave solutions and the dissipation coefficient r of the equation are investigated. In addition, the possible bell profile solitary wave solution, kink profile solitary wave solutions and approximate damped oscillatory solutions of the equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. Based on above studies, a main contribution in this paper is to reveal the dissipation effect on travelling wave solutions of the dissipative (2 + 1)-dimensional AKNS equation.  相似文献   

8.
In this paper, (2 + 1)-dimensional Boussinesq equation is investigated. By using homoclinic test method with the aid of Maple, new explicit periodic solitary wave solutions are obtained. Moreover, mechanical feature of wave is exhibited.  相似文献   

9.
We consider the nonlinear dispersive K(m,n) equation with the generalized evolution term and derive analytical expressions for some conserved quantities. By using a solitary wave ansatz in the form of sechp function, we obtain exact bright soliton solutions for (2 + 1)-dimensional and (3 + 1)-dimensional K(m,n) equations with the generalized evolution terms. The results are then generalized to multi-dimensional K(m,n) equations in the presence of the generalized evolution term. An extended form of the K(m,n) equation with perturbation term is investigated. Exact bright soliton solution for the proposed K(m,n) equation having higher-order nonlinear term is determined. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients.  相似文献   

10.
The least-squares solution and the least-squares symmetric solution with the minimum-norm of the matrix equations AX = B and XC = D are considered in this paper. By the matrix differentiation and the spectral decomposition of matrices, an explicit representation of such solution is given.  相似文献   

11.
In this paper, we establish exact solutions for (2 + 1)-dimensional nonlinear evolution equations. The sine-cosine method is used to construct exact periodic and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. Many new families of exact traveling wave solutions of the (2 + 1)-dimensional Boussinesq, breaking soliton and BKP equations are successfully obtained. These solutions may be important of significance for the explanation of some practical physical problems. It is shown that the sine-cosine method provides a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics.  相似文献   

12.
In this paper, some novel solitary wave solutions, including solitary-like wave solution, x-periodic soliton solution, y-periodic soliton solution, doubly periodic solution, rational solution, and new non-traveling wave solution, are obtained for (2 + 1)-dimensional Burgers equation by means of the generalized direct ansätz method and different test functions.  相似文献   

13.
A variety of shallow water waves equations in (1 + 1) and (2 + 1) dimensions are investigated. We first show that these models are completely integrable. We next determine multiple-soliton solutions for each equation. The simplified Hirota’s bilinear method developed by Hereman will be employed to achieve this goal. A comparison between dispersion relations and the phase shifts will be conducted. (But possess the same coefficients for the polynomials of exponentials.)  相似文献   

14.
Using an improved direct reduction method, we find the equivalence transformations of (2 + 1)-dimensional AKNS shallow water wave equation with variable coefficients, and obtain the corresponding relationship between explicit solutions of AKNS equation and those of the corresponding reduced equation. In addition, we get some new explicit solutions of AKNS equation by applying Lie symmetry method.  相似文献   

15.
This paper is devoted to studying the (2 + 1)-dimensional KP-BBM wave equation. Exp-function method is used to conduct the analysis. The generalized solitary solutions, periodic solutions and other exact solutions for the (2 + 1)-dimensional KP-BBM wave equation are obtained via this method with the aid of symbolic computational system. It is also shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.  相似文献   

16.
Exact soliton solutions to the (2 + 1)-dimensional Ito equation are studied based on the idea of extended homoclinic test and bilinear method. Some explicit solutions, such as triangle function solutions, soliton solutions, doubly-periodic wave solutions and periodic solitary wave solutions, are obtained. It shows that the (2 + 1)-dimensional Ito equation has richer solutions. Besides, the elastic interactions of the solutions and their corresponding physical meaning are discussed.  相似文献   

17.
We derive Wronskian and Grammian determinant solutions for the two-dimensional Leznov lattice and provide a Pfaffianized version of this Leznov lattice using Hirota and Ohta’s Pfaffianization procedure. We give the Gramm-type Pfaffian solution for the Pfaffianized system explicitly.__________Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 3, pp. 484–491, September, 2005.  相似文献   

18.
The matrix equation AX = B with PX = XP and XH = sX constraints is considered, where P is a given Hermitian involutory matrix and s = ±1. By an eigenvalue decomposition of P, we equivalently transform the constrained problem to two well-known constrained problems and represent the solutions in terms of the eigenvectors of P. Using Moore-Penrose generalized inverses of the products generated by matrices A, B and P, the involved eigenvectors can be released and eigenvector-free formulas of the general solutions are presented. Similar strategy is applied to the equations AX = B, XC = D with the same constraints.  相似文献   

19.
In this work, four (2 + 1)-dimensional nonlinear extensions of the Kadomtsev-Petviashvili (KP) equation are developed. The complete integrability of these models are investigated. Multiple-soliton solutions and multiple singular soliton solutions are determined to demonstrate the compatibility of these models. The resonance phenomenon does not exist for any of the derived models.  相似文献   

20.
In this Letter, we study (2 + 1)-dimensional soliton equation by using the bifurcation theory of planar dynamical systems. Following a dynamical system approach, in different parameter regions, we depict phase portraits of a travelling wave system. Bell profile solitary wave solutions, kink profile solitary wave solutions and periodic travelling wave solutions are given. Further, we present the relations between the bounded travelling wave solutions and the energy level h. Through discussing the energy level h, we obtain all explicit formulas of solitary wave solutions and periodic wave solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号