Let t=min{a1,a2,…,am−1} and b=a1+a2++am−1t. In this paper it is shown that whenever t=2,
R(a1,a2,…,am−1)=2b2+9b+8.
It is also shown that for all values of t,
R(a1,a2,…,am−1)tb2+(2t2+1)b+t3.
  相似文献   

18.
A uniform bound for the deviation of empirical distribution functions     
Luc P. Devroye   《Journal of multivariate analysis》1977,7(4):594-597
If X1, …, Xn are independent Rd-valued random vectors with common distribution function F, and if Fn is the empirical distribution function for X1, …, Xn, then, among other things, it is shown that P{supx Fn(x) ε} 2e2(2n)de−2nε2 for all nε2d2. The inequality remains valid if the Xi are not identically distributed and F(x) is replaced by ΣiP{Xix}/n.  相似文献   

19.
On Sobolev Orthogonality for the Generalized Laguerre Polynomials     
Teresa E. Prez  Miguel A. Piar 《Journal of Approximation Theory》1996,86(3):278-285
The orthogonality of the generalized Laguerre polynomials, {L(α)n(x)}n0, is a well known fact when the parameterαis a real number but not a negative integer. In fact, for −1<α, they are orthogonal on the interval [0, +∞) with respect to the weight functionρ(x)=xαex, and forα<−1, but not an integer, they are orthogonal with respect to a non-positive definite linear functional. In this work we will show that, for every value of the real parameterα, the generalized Laguerre polynomials are orthogonal with respect to a non-diagonal Sobolev inner product, that is, an inner product involving derivatives.  相似文献   

20.
Completeness of Trigonometric System with Integer Indices {e; x }     
Akio Arimoto 《Journal of Approximation Theory》2001,112(2)
Necessary and sufficient conditions are given which ensure the completeness of the trigonometric systems with integer indices; {einx; x }n=−∞ or {einx; x }n=1 in Lα(μ,  ), α1. If there exists a support Λ of the measure μ which is a wandering set, that is, Λ+2, k=0, ±1, ±2, … are mutually disjoint for different k's, then the linear span of our trigonometric system {einx; x }n=−∞ is dense in Lα(μ,  ) α1. The converse statement is also true.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give a direct formulation of the invariant polynomials μGq(n)(, Δi,;, xi,i + 1,) characterizing U(n) tensor operators p, q, …, q, 0, …, 0 in terms of the symmetric functions Sλ known as Schur functions. To this end, we show after the change of variables Δi = γi − δi and xi, i + 1 = δi − δi + 1 thatμGq(n)(,Δi;, xi, i + 1,) becomes an integral linear combination of products of Schur functions Sα(, γi,) · Sβ(, δi,) in the variables {γ1,…, γn} and {δ1,…, δn}, respectively. That is, we give a direct proof that μGq(n)(,Δi,;, xi, i + 1,) is a bisymmetric polynomial with integer coefficients in the variables {γ1,…, γn} and {δ1,…, δn}. By making further use of basic properties of Schur functions such as the Littlewood-Richardson rule, we prove several remarkable new symmetries for the yet more general bisymmetric polynomials μmGq(n)1,…, γn; δ1,…, δm). These new symmetries enable us to give an explicit formula for both μmG1(n)(γ; δ) and 1G2(n)(γ; δ). In addition, we describe both algebraic and numerical integration methods for deriving general polynomial formulas for μmGq(n)(γ; δ).  相似文献   

2.
Let X1, X2,… be idd random vectors with a multivariate normal distribution N(μ, Σ). A sequence of subsets {Rn(a1, a2,…, an), nm} of the space of μ is said to be a (1 − α)-level sequence of confidence sets for μ if PRn(X1, X2,…, Xn) for every nm) ≥ 1 − α. In this note we use the ideas of Robbins Ann. Math. Statist. 41 (1970) to construct confidence sequences for the mean vector μ when Σ is either known or unknown. The constructed sequence Rn(X1, X2, …, Xn) depends on Mahalanobis' or Hotelling's according as Σ is known or unknown. Confidence sequences for the vector-valued parameter in the general linear model are also given.  相似文献   

3.
Let = {Ut: t > 0} be a strongly continuous one-parameter group of operators on a Banach space X and Q be any subset of a set (X) of all probability measures on X. By (Q; ) we denote the class of all limit measures of {Utn1 * μ2*…*μn)*δxn}, where {μn}Q, {xn}X and measures Utnμj (j=1, 2,…, n; N=1, 2,…) form an infinitesimal triangular array. We define classes Lm( ) as follows: L0( )= ( (X); ), Lm( )= (Lm−1( ); ) for m=1, 2,… and L( )=m=0Lm( ). These classes are analogous to those defined earlier by Urbanik on the real line. Probability distributions from Lm( ), m=0, 1, 2,…, ∞, are described in terms of their characteristic functionals and their generalized Poisson exponents and Gaussian covariance operators.  相似文献   

4.
Let μ be a finite positive Borel measure supported in [−1,1] and introduce the discrete Sobolev-type inner product
where the mass points ak belong to [−1,1], Mk,i0, i=0,…,Nk−1, and Mk,Nk>0. In this paper, we study the asymptotics of the Sobolev orthogonal polynomials by comparison with the orthogonal polynomials with respect to the measure μ and we prove that they have the same asymptotic behaviour. We also study the pointwise convergence of the Fourier series associated to this inner product provided that μ is the Jacobi measure. We generalize the work done by F. Marcellán and W. Van Assche where they studied the asymptotics for only one mass point in [−1,1]. The same problem with a finite number of mass points off [−1,1] was solved by G. López, F. Marcellán and W. Van Assche in a more general setting: they consider the constants Mk,i to be complex numbers. As regards the Fourier series, we continue the results achieved by F. Marcellán, B. Osilenker and I.A. Rocha for the Jacobi measure and mass points in .  相似文献   

5.
The zeros of linear combinations of orthogonal polynomials   总被引:2,自引:1,他引:1  
Let {pn} be a sequence of monic polynomials with pn of degree n, that are orthogonal with respect to a suitable Borel measure on the real line. Stieltjes showed that if m<n and x1,…,xn are the zeros of pn with x1<<xn then there are m distinct intervals f the form (xj,xj+1) each containing one zero of pm. Our main theorem proves a similar result with pm replaced by some linear combinations of p1,…,pm. The interlacing of the zeros of linear combinations of two and three adjacent orthogonal polynomials is also discussed.  相似文献   

6.
Let {u0, u1,… un − 1} and {u0, u1,…, un} be Tchebycheff-systems of continuous functions on [a, b] and let f ε C[a, b] be generalized convex with respect to {u0, u1,…, un − 1}. In a series of papers ([1], [2], [3]) D. Amir and Z. Ziegler discuss some properties of elements of best approximation to f from the linear spans of {u0, u1,…, un − 1} and {u0, u1,…, un} in the Lp-norms, 1 p ∞, and show (under different conditions for different values of p) that these properties, when valid for all subintervals of [a, b], can characterize generalized convex functions. Their methods of proof rely on characterizations of elements of best approximation in the Lp-norms, specific for each value of p. This work extends the above results to approximation in a wider class of norms, called “sign-monotone,” [6], which can be defined by the property: ¦ f(x)¦ ¦ g(x)¦,f(x)g(x) 0, a x b, imply f g . For sign-monotone norms in general, there is neither uniqueness of an element of best approximation, nor theorems characterizing it. Nevertheless, it is possible to derive many common properties of best approximants to generalized convex functions in these norms, by means of the necessary condition proved in [6]. For {u0, u1,…, un} an Extended-Complete Tchebycheff-system and f ε C(n)[a, b] it is shown that the validity of any of these properties on all subintervals of [a, b], implies that f is generalized convex. In the special case of f monotone with respect to a positive function u0(x), a converse theorem is proved under less restrictive assumptions.  相似文献   

7.
Let ƒbe a continuous function and sn be the polynomial of degree at mostn of best L2(μ)-approximation to ƒon [-1,1]. Let Zn(ƒ):=\s{xε[-1,1]:ƒ(x)−sn(x) = 0\s}. Under mild conditions on the measure μ, we prove that Zn(ƒ) is dense in [-1,1]. This answers a question posed independently by A. Kroó and V. Tikhomiroff. It also provides an analogue of the results of Kadec and Tashev (for L∞) and Kroó and Peherstorfer (for L1) for least squares approximation.  相似文献   

8.
In this paper a form of the Lindeberg condition appropriate for martingale differences is used to obtain asymptotic normality of statistics for regression and autoregression. The regression model is yt = Bzt + vt. The unobserved error sequence {vt} is a sequence of martingale differences with conditional covariance matrices {Σt} and satisfying supt=1,…, n {v′tvtI(v′tvt>a) |zt, vt−1, zt−1, …} 0 as a → ∞. The sample covariance of the independent variables z1, …, zn, is assumed to have a probability limit M, constant and nonsingular; maxt=1,…,nz′tzt/n 0. If (1/nt=1nΣt Σ, constant, then √nvec( nB) N(0,M−1Σ) and n Σ. The autoregression model is xt = Bxt − 1 + vt with the maximum absolute value of the characteristic roots of B less than one, the above conditions on {vt}, and (1/nt=max(r,s)+1tvt−1−rv′t−1−s) δrs(ΣΣ), where δrs is the Kronecker delta. Then √nvec( nB) N(0,Γ−1Σ), where Γ = Σs = 0BsΣ(B′)s.  相似文献   

9.
The basic result of the paper states: Let F1, …, Fn, F1,…, Fn have proportional hazard functions with λ1 ,…, λn , λ1 ,…, λn as the constants of proportionality. Let X(1) ≤ … ≤ X(n) (X(1) ≤ … ≤ X(n)) be the order statistics in a sample of size n from the heterogeneous populations {F1 ,…, Fn}({F1 ,…, Fn}). Then (λ1 ,…, λn) majorizes (λ1 ,…, λn) implies that (X(1) ,…, X(n)) is stochastically larger than (X(1) ,…, X(n)). Earlier results stochastically comparing individual order statistics are shown to be special cases. Applications of the main result are made in the study of the robustness of standard estimates of the failure rate of the exponential distribution, when observations actually come from a set of heterogeneous exponential distributions. Further applications are made to the comparisons of linear combinations of Weibull random variables and of binomial random variables.  相似文献   

10.
In this paper we give a sufficient condition for the pointwise Korovkin property on B(X), the space of bounded real valued functions on an arbitrary countable set X = {xl,…, xj,…}. Our theorem follows from its Lp(X, μ) analogue (and conversely); here 1 p < ∞ and μ is a positive finite measure on X such that μ({xj}) > 0 for all j.  相似文献   

11.
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

12.
We investigate polynomials satisfying a three-term recurrence relation of the form Bn(x)=(xβn)Bn−1(x)−αnxBn−2(x), with positive recurrence coefficients αn+1,βn (n=1,2,…). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where αnα and βnβ and show that the zeros of Bn are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials.  相似文献   

13.
Caihui Lu  Haixia Xu   《Journal of Algebra》2003,260(2):570-576
In a symmetrizable Kac–Moody algebra g(A), let α=∑i=1nkiαi be an imaginary root satisfying ki>0 and α,αi<0 for i=1,2,…,n. In this paper, it is proved that for any xαgα{0}, satisfying [xα,fn]≠0 and [xα,fi]=0 for i=1,2,…,n−1, there exists a vector y such that the subalgebra generated by xα and y contains g′(A), the derived subalgebra of g(A).  相似文献   

14.
Treated in this paper is the problem of estimating with squared error loss the generalized variance | Σ | from a Wishart random matrix S: p × p Wp(n, Σ) and an independent normal random matrix X: p × k N(ξ, Σ Ik) with ξ(p × k) unknown. Denote the columns of X by X(1) ,…, X(k) and set ψ(0)(S, X) = {(np + 2)!/(n + 2)!} | S |, ψ(i)(X, X) = min[ψ(i−1)(S, X), {(np + i + 2)!/(n + i + 2)!} | S + X(1) X(1) + + X(i) X(i) |] and Ψ(i)(S, X) = min[ψ(0)(S, X), {(np + i + 2)!/(n + i + 2)!}| S + X(1) X(1) + + X(i) X(i) |], i = 1,…,k. Our result is that the minimax, best affine equivariant estimator ψ(0)(S, X) is dominated by each of Ψ(i)(S, X), i = 1,…,k and for every i, ψ(i)(S, X) is better than ψ(i−1)(S, X). In particular, ψ(k)(S, X) = min[{(np + 2)!/(n + 2)!} | S |, {(np + 2)!/(n + 2)!} | S + X(1)X(1)|,…,| {(np + k + 2)!/(n + k + 2)!} | S + X(1)X(1) + + X(k)X(k)|] dominates all other ψ's. It is obtained by considering a multivariate extension of Stein's result (Ann. Inst. Statist. Math. 16, 155–160 (1964)) on the estimation of the normal variance.  相似文献   

15.
Let μ be a probability measure on [− a, a], a > 0, and let x0ε[− a, a], f ε Cn([−2a, 2a]), n 0 even. Using moment methods we derive best upper bounds to ¦∫aa ([f(x0 + y) + f(x0y)]/2) μ(dy) − f(x0)¦, leading to sharp inequalities that are attainable and involve the second modulus of continuity of f(n) or an upper bound of it.  相似文献   

16.
Upper and lower bounds for generalized Christoffel functions, called Freud-Christoffel functions, are obtained. These have the form λn,p(W,j,x) = infPWLp(R)/|P(j)(X)| where the infimum is taken over all polynomials P(x) of degree at most n − 1. The upper and lower bounds for λn,p(W,j,x) are obtained for all 0 < p ∞ and J = 0, 1, 2, 3,… for weights W(x) = exp(−Q(x)), where, among other things, Q(x) is bounded in [− A, A], and Q″ is continuous in β(−A, A) for some A > 0. For p = ∞, the lower bounds give a simple proof of local and global Markov-Bernstein inequalities. For p = 2, the results remove some restrictions on Q in Freud's work. The weights considered include W(x) = exp(− ¦x¦α/2), α > 0, and W(x) = exp(− expx¦)), > 0.  相似文献   

17.
For all integers m3 and all natural numbers a1,a2,…,am−1, let n=R(a1,a2,…,am−1) represent the least integer such that for every 2-coloring of the set {1,2,…,n} there exists a monochromatic solution to
a1x1+a2x2++am−1xm−1=xm.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号