共查询到20条相似文献,搜索用时 12 毫秒
1.
Boudalis AK Lalioti N Spyroulias GA Raptopoulou CP Terzis A Bousseksou A Tangoulis V Tuchagues JP Perlepes SP 《Inorganic chemistry》2002,41(24):6474-6487
The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. M?ssbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances. 相似文献
2.
The structures and related properties of the complex [Ru(phen)2(6-OH-dppz)]2+ (phen = 1,10-phenanthroline; dppz = dipyrido [3,2-a:2',3'-c]phenazine) in the ground state (S0), the first singlet excited state (S1), and the first triplet excited state (T1) have been studied using density functional theory (DFT), time-dependent (TD) DFT, Hartree-Fock (HF), and configuration interaction singles (CIS) methods. Three electronic absorption-spectral bands (1MLCT, 1LL, and 1LL) lying in the range of 250-550 nm in vacuo and in aqueous solution were theoretically calculated, simulated, and assigned with TDDFT method. In particular, the theoretical results show the following: (1) The positive charges of central Ru atom in the excited states (S1 and T1) are greatly increased relative to those in the ground state (S0), and thus the Ru atom in the excited states can be regarded as Ru(III). (2) The positive charges on the main ligand (6-OH-dppz) in the excited states are considerably reduced, and thus the interaction between the main ligand (intercalative ligand) and DNA base pairs is considerably weakened. (3) The geometric structures in excited states are also distorted, resulting in obvious increase in the coordination bond length. It is advantageous to the complex forming a high oxidizing center (i.e., Ru(III) ion). On the basis of these results, a theoretical explanation on photoinduced oxidation reduction mechanism of DNA photocleavage by [Ru(phen)2(6-OH-dppz)](2+) has been presented. 相似文献
3.
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN). 相似文献
4.
Wu G Norris C Stewart H Cox H Stace AJ 《Chemical communications (Cambridge, England)》2008,(35):4153-4155
A combined theoretical and experimental study of electronic transitions in the complex [Zn(pyridine)(4)](2+) provides the first example of a state-resolved electronic spectrum to be recorded for a dication complex in the gas phase. 相似文献
5.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed. 相似文献
6.
The use of cyclen (1,4,7,10-tetraazacyclododecane) as a blocking ligand enables assembly of the mixed-valence square complex [(cyclen)4Ru4(pz)4]9+ (pz = pyrazine). A crystal structure determination shows the molecule to possess a regular square geometry wherein each Ru atom has an equivalent coordination environment. Consistent with the presence of one RuIII and three RuII centers, cyclic voltammetry reveals a single reversible reduction wave and three successive oxidation waves. The separation between the first oxidation and reduction waves indicates a comproportionation constant of Kc = 108.9 for the [(cyclen)4Ru6(pz)4]9+ square, suggesting a greater extent of electron delocalization than that observed for the Creutz-Taube ion. The closer spacing between oxidation waves suggests a lesser degree of delocalization in the [(cyclen)4Ru6(pz)4]10+ (Kc = 102.0) and [(cyclen)4Ru6(pz)4]11+ (Kc = 103.0) species, bearing the higher average oxidation states of Ru2.5+ and Ru2.75+, respectively. 相似文献
7.
The neutral complex [Ru(2)(acac)(4)(bptz)] (I) has been prepared by the reaction of Ru(acac)(2)(CH(3)CN)(2) with bptz (bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) in acetone. The diruthenium(II,II) complex (I) is green and exhibits an intense metal-ligand charge-transfer band at 700 nm. Complex I is diamagnetic and has been characterized by NMR, optical spectroscopy, IR, and single-crystal X-ray diffraction. Crystal structure data for I are as follows: triclinic, P1, a = 11.709(2) A, b = 13.487(3) A, c = 15.151(3) A, alpha = 65.701(14) degrees, beta = 70.610(14) degrees, gamma = 75.50(2) degrees, V = 2038.8(6) A(3), Z = 2, R = 0.0610, for 4397 reflections with F(o) > 4sigmaF(o). Complex I shows reversible Ru(2)(II,II)-Ru(2)(II,III) and Ru(2)(II,III)-Ru(2)(III,III) couples at 0.17 and 0.97 V, respectively; the 800 mV separation indicates considerable stabilization of the mixed-valence species (K(com) > 10(13)). The diruthenium(II,III) complex, [Ru(2)(acac)(4)(bptz)](PF(6)) (II) is prepared quantitatively by one-electron oxidation of I with cerium(IV) ammonium nitrate in methanol followed by precipitation with NH(4)PF(6). Complex II is blue and shows an intense MLCT band at 575 nm and a weak band at 1220 nm in CHCl(3), which is assigned as the intervalence CT band. The mixed valence complex is paramagnetic, and an isotropic EPR signal at g = 2.17 is observed at 77 and 4 K. The solvent independence and narrowness of the 1200 nm band show that complex II is a Robin and Day class III mixed-valence complex. 相似文献
8.
Cox H Akibo-Betts G Wright RR Walker NR Curtis S Duncombe B Stace AJ 《Journal of the American Chemical Society》2003,125(1):233-242
An experimental gas-phase study of the intensities and fragmentation patterns of [Mn.(H(2)O)(n)](2+) and [Mn.(ROH)(n)](2+) complexes shows the combinations [Mn.(H(2)O)(4)](2+) and [Mn.(ROH)(4)](2+) to be stable. Evidence in complexes involving the alcohols methanol, ethanol, 1-propanol, and 2-propanol favors preferential fragmentation to [Mn.(ROH)(4)](2+), whereas the fragmentation data for water is less clear. Supporting density functional calculations show that both [Mn.(H(2)O)(4)](2+) and [Mn.(MeOH)(4)](2+) adopt stable tetrahedral configurations, similar to those proposed for biochemical systems where solvent availability and coordination is restricted. Calculated incremental binding energies show a gradual decline on going from one to six solvent molecules, with a step occurring between four and five molecules. The addition of further solvent molecules to the stable [Mn.(MeOH)(4)](2+) unit shows a preference for [Mn.(MeOH)(4)(MeOH)(1,2)](2+) structures, where the extra molecules occupy hydrogen-bonded sites in the form of a secondary solvation shell. Very similar behavior is seen on the part of water. As part of an analysis of the experimental data, the calculations have explored the influence different spins states of Mn(2+) have on solvent geometry. It is concluded that the experimental observations are best reproduced when the central Mn(2+) ion is in the high-spin (6)S ground state. The results are also considered in terms of the biochemical activity of Mn(2+) where the ion is capable of isomorphous substitution with Zn(2+), which itself exhibits a preference for tetrahedral coordination. 相似文献
9.
Density functional theory is applied to modeling the exchange in aqueous solution of H(2)O on [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)]. Optimized structures for the starting molecules are reported together with trigonal bipyramidal (tbp) systems relevant to an associative mechanism. While a rigorous tbp geometry cannot by symmetry be the actual transition state, it appears that the energy differences between model tbp structures and the actual transition states are small. Ground state geometries calculated via the local density approximation (LDA) for [Pd(H(2)O)(4)](2+) and relativistically corrected LDA for the Pt complexes are in good agreement with available experimental data. Nonlocal gradient corrections to the LDA lead to relatively inferior structures. The computed structures for analogous Pd and Pt species are very similar. The equatorial M-OH(2) bonds of all the LDA-optimized tbp structures are predicted to expand by 0.25-0.30 ?, while the axial bonds change little relative to the planar precursors. This bond stretching in the transition state counteracts the decrease in partial molar volume caused by coordination of the entering water molecule and can explain qualitatively the small and closely similar volumes of activation observed. The relatively higher activation enthalpies of the Pt species can be traced to the relativistic correction of the total energies while the absolute DeltaH() values for exchange on [Pd(H(2)O)(4)](2+) and [Pt(H(2)O)(4)](2+) are reproduced using relativistically corrected LDA energies and a simple Born model for hydration. The validity of the latter is confirmed via some simple atomistic molecular mechanics estimates of the relative hydration enthalpies of [Pd(H(2)O)(4)](2+) and [Pd(H(2)O)(5)](2+). The computed DeltaH() values are 57, 92, and 103 kJ/mol compared to experimental values of 50(2), 90(2), and 100(2) kJ/mol for [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)], respectively. The calculated activation enthalpy for a hypothetical dissociative water exchange at [Pd(H(2)O)(4)](2+) is 199 kJ/mol. A qualitative analysis of the modeling procedure, the relative hydration enthalpies, and the zero-point and finite temperature corrections yields an estimated uncertainty for the theoretical activation enthalpies of about 15 kJ/mol. 相似文献
10.
The first chainlike germanate, [Ge(7)O(13)(OH)(2)F(3)](3)(-).Cl(-).2[Ni(dien)(2)](2+), has been solvothermally synthesized by using Ni(dien)(2)(2+) cations as the template and characterized by IR, SEM, TGA, powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDXA), elemental analysis, and single-crystal X-ray diffraction, respectively. This compound crystallized in the monoclinic space group P2/nwith a = 8.8904(2) A, b = 17.4374(3) A, c = 13.2110(3) A, beta = 101.352(1) degrees, V = 2007.97(7) A(3), and Z = 2. Interestingly, the structure contains two types of chiral mer-[Ni(dien)(2)](2+) cations and two types of chiral chains, one left-handed and the other right-handed, which lead to a racemic compound. The orderly separation of achiral s-fac-[Ni(dien)(2)](2+) and chiral mer-[Ni(dien)(2)](2+) isomers was found in the structure. The structure is stabilized by N-H.O(F, Cl) hydrogen bonds. 相似文献
11.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399. 相似文献
12.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive. 相似文献
13.
Setifi F Ouahab L Golhen S Hernandez O Miyazaki A Enoki T Toita T Yamada J Nishikawa H Łapiński A Swietlik R 《Inorganic chemistry》2002,41(14):3761-3768
The preparation, crystal structures, and optical and magnetic properties of two new charge-transfer salts kappa-(EDDH-TTP)(3)[Cr(phen)(NCS)(4)] x 2CH(2)Cl(2) (1) and kappa(21)-(BDH-TTP)(5)[Cr(phen)(NCS)(4)](2) x 2CH(2)Cl(2) (2), where phen = 1,10- phenanthroline, EDDH-TTP = 2-(4,5-ethylenedithio-1,3-dithiol-2-ylidene)-5-(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, and BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, are reported. Crystal data: (1) monoclinic P2(1)/a, a = 25.0752(5) A, b = 10.6732(3) A, c = 28.1601(6) A, beta = 95.195(2) degrees, Z = 4, R = 0.0585 for 6741 independent reflections with I > 3 sigma(I); (2) monoclinic P2(1)/a, a = 23.8275(4) A, b = 9.1015 (2) A, c = 27.0420(1) A, beta = 99.9297(8) degrees, Z = 4, R = 0.0530 for 4565 independent reflections with I > 2 sigma(I). The crystal structures for both compounds consist of alternating organic and inorganic layers. The organic layer in compound 1 is characterized as kappa-type, while the organic layer in 2 resembles the kappa-type but it contains orthogonal dimers and monomers, and it is therefore called kappa(21). Compound 1 shows metallic behavior down to low temperature. Salt 2 shows semiconductive behavior, which is explained as the result of either charge ordering owing to the kappa(21)-type structure or Peierls distortion due to the one-dimensional electronic nature. However, weak metallic behavior could be observed at 10 kbar above ca. 150 K and at 15 kbar above 170 K. The magnetic susceptibilities for both compounds show Curie-Weiss behavior, showing that the exchange interactions between the magnetic anions are weak. Polarized reflectance spectra of single crystals were measured over the spectral range from 650 to 7000 cm(-1). Moreover, absorption and diffusion reflectance spectra of powdered crystals dispersed in KBr (from 400 to 7000 cm(-1)) were recorded. Vibrational and electronic features are discussed. 相似文献
14.
The highly electrophilic, 16-electron, coordinatively unsaturated [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex brings about the heterolytic activation of H(2)(g) and spontaneously generates HOTf. In addition, trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) and an unprecedented example of a phosphorous acid complex, [Ru(P(OH)(3))(dppe)(2)](2+), are formed. The [Ru(P(OMe)(OH)(2))(dppe)(2)][OTf](2) complex also cleaves the Si-H bond in EtMe(2)SiH in a heterolytic fashion, resulting in the trans-[Ru(H)(P(OMe)(OH)(2))(dppe)(2)](+) derivative. 相似文献
15.
Kinetic studies, using stopped-flow spectrophotometry, on the reactions of [M(4)(SPh)(10)](2)(-) (M = Fe or Co) with PhS(-) to form [M(SPh)(4)](2)(-) are described, as are the reactions between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) to form [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). The kinetics of the reactions with PhS(-) are consistent with an initial associative substitution mechanism involving attack of PhS(-) at one of the tetrahedral M sites of [M(4)(SPh)(10)](2)(-) to form [M(4)(SPh)(11)](3)(-). Subsequent or concomitant cleavage of a micro-SPh ligand, at the same M, initiates a cascade of rapid reactions which result ultimately in the complete rupture of the cluster and formation of [M(SPh)(4)](2)(-). The kinetics of the reaction between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) indicate an initial dissociative substitution mechanism at low concentrations of [MoS(4)](2)(-), in which rate-limiting dissociation of a terminal thiolate from [M(4)(SPh)(10)](2)(-) produces [M(4)(SPh)(9)](-) and the coordinatively unsaturated M site is rapidly attacked by a sulfido group of [MoS(4)](2)(-). It is proposed that subsequent chelation of the MoS(4) ligand results in cleavage of an M-micro-SPh bond, initiating a cascade of reactions which lead to the ultimate break-up of the cluster and formation of the products, [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). With [Co(4)(SPh)(10)](2)(-), at higher concentrations of [MoS(4)](2)(-), a further substitution pathway is evident which exhibits a second order dependence on the concentration of [MoS(4)](2)(-). The mechanistic picture of cluster disruption which emerges from these studies rationalizes the "all or nothing" reactivity of [M(4)(SPh)(10)](2)(-). 相似文献
16.
The trinuclear manganese complex [Mn(3)O(4)(phen)(4)(H(2)O)(2)](NO(3))(4).2.5H(2)O, 1 (where, phen = 1,10-phenanthroline), has been synthesized by the Ce(IV) oxidation of a concentrated solution of manganese(II) acetate and phen in 1.6 N nitric acid. The complex crystallizes in the triclinic space group P&onemacr; with a = 10.700(2) ?, b = 12.643(3) ?, c = 20.509(4) ?, alpha = 78.37(3) degrees, beta = 83.12(3) degrees, gamma = 82.50(3) degrees, and Z = 2. The structure was solved by direct methods and refined by least-squares techniques to the conventional R (R(w)) factors of 0.055 (0.076) based on 4609 unique reflections with F(o) >/= 6.0sigma(F(o)). The structure of the cation consists of an oxo-bridged Mn(3)O(4)(4+) core, with the geometry of the manganese atoms being octahedral. The coordination polyhedron of one of the manganese atoms (Mn(1)) consists of two &mgr; oxo ligands and two pairs of nitrogen atoms of two phen moieties, whereas that of each of the remaining two manganese atoms consists of three &mgr;-oxo ligands, two nitrogen atoms of a phen moiety, and the oxygen atom of a water molecule. The complex represents the second example for water coordination to manganese(IV) centers in complexes with a Mn(3)O(4)(4+) core. Optical spectra in ligand buffer (pH 4.5) reveal complete conversion of the complex into a Mn(III)Mn(IV) species. The observed room-temperature (298 K) magnetic moment of 3.75 &mgr;(B) indicates the presence of strong antiferromagnetic coupling in the complex. 相似文献
17.
Oxidation of Os(2)(hpp)(4)Cl(2), 1 (hpp = the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine), with (FeCp(2))PF(6) produces air-stable [Os(2)(hpp)(4)Cl(2)]PF(6), 2. This is the first structurally confirmed metal-metal bonded paddlewheel compound having an M(2)(7+) core. The Os-Os distances for two crystalline forms, 2.2acetone and 2.hexane, are 2.3309(4) and 2.3290(6) A, respectively. EPR, (1)H NMR, and magnetization data indicate that 2 has an unpaired electron and an exceptionally low g value of 0.791 +/- 0.037. An electrochemical study shows that there is a quasireversible wave corresponding to a more highly oxidized species with an unprecedented Os(2)(8+) core. 相似文献
18.
V Vallet U Wahlgren B Schimmelpfennig Z Szabó I Grenthe 《Journal of the American Chemical Society》2001,123(48):11999-12008
The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-) indicates that the entering/leaving water molecules are located outside the plane formed by the spectator ligands. 相似文献
19.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond. 相似文献
20.
Bi L Hussain F Kortz U Sadakane M Dickman MH 《Chemical communications (Cambridge, England)》2004,(12):1420-1421
The ruthenium-supported isopolyanion [HW(9)O(33)Ru(II)(2)(dmso)(6)](7-) (1) is composed of a nonatungstate wheel stabilized by two Ru(dmso)(3) groups, representing the first structurally characterized Ru-coordinated polyoxotungstate and a novel class of isopolyanions supporting photochromic moieties. 相似文献