首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microscopic theory for reaction-difusion (R-D) processes is developed from Einstein’s master equation including a reactive term. The mean field formulation leads to a generalized R-D equation for the n-th order annihilation reaction A + A + A + ... + A → 0, and the steady state solutions exhibit long range power law behavior showing the relative dominance of sub-diffusion over reaction effects in constrained systems, or conversely short range concentration distribution with finite support describing situations where diffusion is slow and extinction is fast. We apply the theory to analyze experimental data for morphogen gradient formation in the wing disc of the Drosophila embryo.  相似文献   

2.
A general expression for a recursion formula which describes a random walk with coupled modes is given. In this system, the random walker is specified by the jumping probabilities P+ and P which depend on the modes. The transition probability between the modes is expressed by a jumping probabilityR (ij) (orr ij). With the aid of this recursion formula, spatial structures of the steady state of a coupled random walk are studied. By introducing a Liapunov function and entropy, it is shown that the stability condition for the present system can be expressed as the principle of the extremum entropy production.On leave of absence from Tohoku University, Department of Applied Science, Faculty of Engineering, Sendai, 980 Japan.  相似文献   

3.
We present numerical studies of optical bistability which admit variations in both space and time in the governing c-number equations. We justify mean field theory for both the steady state and time dependent regimes for low enough cavity transmissivity T: but for T ? 0.2 mean field theory is scarcely applicable. Higher harmonic fields are important at low T (high reflexion). As expected the steady state hysterisis behaviour at low T is considerably modified in the time dependent regime. Transistor action at high T ~ 0.9 is described. In general the numerical results show good qualitative agreement with the experiment of Gibbs et al.  相似文献   

4.
The thermodynamics of curved boundary layers, with the assumption that the distance between the surface of a fluid cavity and its surface of tension is a quadratic function of the cavity radius, is applied to the exact thermo-dynamic expression forG, the central function of scaled particle theory. The coefficients in the quadratic representation are determined so as to satisfyall five of the known exact conditions onG valid for cavity radii between one-half and one molecular diameter. The results of the calculation are displayed as the hard-sphere equation of state, the boundary tension associated with the surface of tension, and the distance between the cavity surface and the surface of tension. Although the hard-sphere equation of state obtained by this method using all five conditions onG is more accurate than in the case where only two or three conditions are used, the original scaled particle theory, in whichG itself was represented simply by a quadratic function of inverse powers of cavity radius, still yields the more accurate equation of state. Nevertheless, the present approach limits approximations to the distance between the cavity surface and the surface of tension, a small quantity in itself. The path to a still more improved theory remains well defined, contingent upon the discovery of additional exact conditions, and does not depend, as in the original scaled particle theory, on a form forG arrived at in a somewhat ad hoc manner.Research supported under NSF Grant #GP-12408.  相似文献   

5.
Local structure theory calculations7 are applied to the study of cellular automata on the two-dimensional hexagonal lattice. A particular hexagonal lattice rule denoted (3422) is considered in detail. This rule has many features in common with Conway'sLife. The local structure theory captures many of the statistical properties of this rule; this supports hypotheses raised by a study ofLife itself(6). As inLife, the state of a cell under (3422) depends only on the state of the cell itself and the sum of states in its neighborhood at the previous time step. This property implies that evolution rules which operate in the same way can be studied on different lattices. The differences between the behavior of these rules on different lattices are dramatic. The mean field theory cannot reflect these differences. However, a generalization of the mean field theory, the local structure theory, does account for the rule-lattice interaction.  相似文献   

6.
In order to understand the magnetic field-induced restoration of a highly conductive state in , static (SQUID) and dynamic (ESR and AFR) magnetization measurements were performed on polycrystalline samples and single crystals, respectively. In addition, cantilever and resistivity measurements under steady fields were performed. While the metal-insulator transition curve of the () phase diagram exhibits a first order character, a “spin-flop” transition line divides the insulating state when the magnetic field is applied along the easy axis of magnetization. The effects of a RKKY-type indirect exchange and of applied magnetic field are described within the framework of a generalized Kondo lattice, namely two chains of localised spins coupled through the itinerant spins of the 2D sheets of BETS. The calculations, which can incorporate intramolecular electron correlations within a mean field theory, are in qualitative agreement with the field induced transition from the antiferromagnetic insulating ground state to a canted one, i.e. a not fully oriented paramagnetic, but metallic state. Received: 6 August 1997 / Received: 5 November 1997 / Accepted: 10 November 1997  相似文献   

7.
We present an analytic solution for the d-dimensional (d > 1) hard-sphere free flight trajectories in a thermostatted colour field. The solution shows that particles can only reach a finite distance in the direction perpendicular to the field in the absence of collisions. Using a numerical algorithm we designed to simulate many-body hard-sphere systems with curved trajectories, we study the onset of the instability leading to phase separation in the two-dimensional case for a range of field strengths and three densities. For the two fluid densities we find that phase separation occurs for sufficiently strong fields regardless of the initial configuration, and that the phase-separated state eventually becomes a collisionless, non-ergodic steady state. For solid densities the phase-separated configuration is stable and conducting, but is not an attractor for other charge distributions because of the impossibility of particle rearrangement.  相似文献   

8.
Dependence of amplification without inversion (AWI) on the relative strength of probe and coherent field Rabi frequencies has been studied in H2 and LiH molecules for three-level Λ configuration. We have derived exact analytical expressions for coherences and populations keeping all the orders of probe field Rabi frequency (G) and coherent field Rabi frequency. (Θ) in the steady state limit. Previously, first-order approximation (i.e. keeping only the first-order term in G) was used and hence AWI was studied for the condition Θ>>G. Here, by using the exact analytical expressions of coherences and populations, we have shown that AWI is maximum when Θ is within the same order of probe field Rabi frequency G irrespective of the choice of different ro-vibrational transitions in both the molecules. However, the shape of the gain profile and the maximum value of gain on the probe field and the absorption on coherent field depend on the choice of different ro-vibrational levels as the upper lasing levels. Effect of bidirectional pumping, homogeneous and inhomogeneous broadening on AWI process has been studied. By solving the density matrix equations numerically it has been shown that both the transient and the steady state AWI can be obtained and the numerical values of coherences and populations at large time are in very good agreement with exact analytical values in the steady state limit. It has been shown that in molecules AWI can be obtained on probe field of smaller wavelength than that of the coherent field which has not been observed in atoms so far.  相似文献   

9.
By applying a magnetic field whose Zeeman energy exceeds the Kondo energy by an order of magnitude the ground state of the Friedel-Anderson impurity is a magnetic state. In recent years the author introduced the FAIR (Friedel Artificially Inserted Resonance) method to investigate the impurity properties. Within this FAIR approach the full excitation spectrum and the composition of the excitations is calculated and numerically evaluated. From the excitation spectrum the electron density of states is calculated. Majority and minority d-resonances are obtained. The width of the resonances is about twice as wide as the mean field theory predicts. This broadening reduces the height of the resonance curve and therefore the density of states by a factor of two. This yields an intuitive understanding for a previous result of the FAIR approach that it requires a much larger Coulomb interaction for the formation of a magnetic moment than the mean field theory.  相似文献   

10.
The Fluctuation Relation (FR) is an asymptotic result onthe distribution of certain observables averaged over timeintervals τ as τ → ∞ and it is a generalization of thefluctuation–dissipation theorem to far from equilibrium systemsin a steady state, which reduces to the usual Green–Kubo (GK)relation in the limit of small external non-conservative forces.FR is a theorem for smooth uniformly hyperbolic systems, and it isassumed to be true in all dissipative ‘chaotic enough’ systemsin a steady state. In this paper, we develop a theory of finitetime corrections to FR, needed to compare the asymptoticprediction of FR with numerical observations, which necessarilyinvolve fluctuations of observables averaged over finite timeintervals τ. We perform a numerical test of FR in two cases inwhich non-Gaussian fluctuations are observable, while GK does notapply and we get a non-trivial verification of FR that is independent of and different from linear response theory.Our results are compatible with the theory of finite timecorrections to FR, while FR would be observably violated,well within the precision of our experiments, if such correctionswere neglected.  相似文献   

11.
The current induced phase transition from the superconducting to the normalconducting state is studied in whiskers of tin. Transition curves were taken byU(T)-measurements at steady currents as well as characteristic curves byU (I)-measurements at fixed temperatures. For larger current intensities these curves show voltage steps which increase linearly with current intensity. The onset of voltage reading appears at the critical current density, as predicted by theory. The step structures are, however, observed at current densities which are several times larger than the critical ones. The influence of a magnetic field on the location and the structure of the curves was measured and is compared to theoretical predictions. At temperatures close toT co whiskers are onedimensional with respect to the superconducting orderparameter because of their small diameters. Therefore, intermediate state pattern and flux flow are rejected as an explanation of the observed structures.
  相似文献   

12.
The approach to and structure of the equilibrium state is studied for a 7-bit lattice gas with biased forward and backward transition rates by means of mean field theory and computer simulations. If the rate constants obey the factorizability and the detailed balance conditions, the occupations of different velocity directions are uncorrelated, anH-theorem is valid, and a nonuniversal equilibrium state exists that depends explicitly on the transition rates. In case the above conditions are not satisfied, theH-theorem is no longer valid, and mean field theory also predicts nontrivial velocity correlations in postcollision states. The simulations are mainly concentrated on the time dependence of pre- and postcollision velocity correlations on a single node, and on slowly increasing fluctuations that might indicate metastable behavior.  相似文献   

13.
The calculations developed in this paper aim at determining the optimal conditions of a NQR experiment when a transition is monitored by means of a pulse train with pulses of identical duration and signal acquisition after each pulse; coherences are assumed to vanish by effective transverse relaxation prior to every new pulse. These calculations demonstrate that, as in NMR, a steady state is effectively reached for any value of the recycle time. However, by contrast with NMR, it is shown that, for optimal data averaging under steady state conditions, the recycle time T can be kept as low as possible (the only limitation is the acquisition time). Nutation curves (signal amplitude versus pulse length) calculated in the steady state case are shown to depend strongly on the ratio T/T 1 (T 1: longitudinal relaxation time). The signal growth as a function of T/T 1under averaging of the first transients has been evaluated as well as the number of pulses necessary for reaching a steady state.  相似文献   

14.
The aim of this present paper is to construct exact solutions corresponding to the motion of magnetohydrodynamic (MHD) fluid in the presence of Hall current, due to cosine and sine oscillations of a rigid plate as well as those induced by an oscillating pressure gradient. A uniform magnetic field is applied transversely to the flow. By using Fourier sine transform steady state and transient solutions are presented. These solutions satisfy the governing equations and all associated initial and boundary conditions. The results for a hydrodynamic second grade fluid can be obtained as a limiting case when B 0 → 0 and for a Newtonian fluid when α 1 → 0.  相似文献   

15.
The phase velocity, the amplification rate and the critical Hall parameter are theoretically determined for ionization waves in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both the magnetic field and the stream velocity. The investigations hold for seeded rare gases at any degree of seed ionization. The critical Hall parameter βc depends on the degree of ionization, the ionization energy and the temperatures of electron gas T0 and neutral gas Tg · βc is always greater than one, if 0 < T0Tg ? T0 holds. The three-dimensional treatment indicates the existence of waves with a nonvanishing wave vector component in the direction of the magnetic field. The influence of ionization waves on mean current density, mean Hall field intensity and mean electron temperature is determined up to second order terms in the relative fluctuations of the electron temperature. The amplification of ionization waves reduces the effective electric conductivity, the effective Hall parameter and the mean electron temperature compared to the undisturbed state. Similar results are also obtained for steady state homogeneous isotropic turbulence and a special case of axially symmetric turbulence. Furthermore, a component of the electric field in direction or in opposite direction to the magnetic field vector may be generated by non isotropic and non homogeneous turbulence.  相似文献   

16.
The problem of the shift and broadening of the electron energy levels in the field of two 3D short-range potentials (e.g., the model of a negative molecular ion) by a constant electric field F is considered. The interaction of an electron with attraction centers is taken into account in the effective range approximation. We analyze the cases when both centers maintain weakly bound s states and when the electron state in the field of one of the centers is a p state. Exact numerical results for the shift and the width of the energy levels of a quasi-molecule as functions of field F, distance R between atomic centers, and the orientation of the quasi-molecule axis relative to vector F are presented, as well as the results of analytic treatment for a number of limiting cases. The exact values of complex energies of the quasi-molecule are compared with analytic results for a weak field in the case of identical s centers [26], as well as nonequivalent s centers and s-p centers; the applicability boundaries of the weak field approximation are established. It is shown that for large values of R, the position and width of the levels in a strong field are correctly described in perturbation theory in the exchange interaction. We analyze the field-induced quasi-intersection of molecular energy levels of the system with nonequivalent atomic centers and peculiarities in the energy level widths associated with this intersection. The results make it possible to qualitatively interpret the results of numerical calculations of the probability of homo- and heteronuclear molecules being ionized by a low-frequency laser field.  相似文献   

17.
After proposing lattice gauge field models in which the Migdal renormalization group recursion formulas are exact, we study the recursion formulas analytically. IfD is less than 4, it is shown that the effective actions ofD-dimensionalU(1) lattice gauge models are uniformly driven to the high temperature region no matter how low the initial temperature is. If the initial temperature is large enough, this holds for anyD and gauge groupG. These are also the cases for the recursion formulas of Kadanoff type. It turns out, however, that the string tension forD=3 obtained by these methods is rather big compared with the one already obtained by Mack, Göpfert and by the present author. The reason is clarified.On leave of absence from: Dept. of Maths. Bedford College, Regents Park, London NW 1, England  相似文献   

18.
In order to continue and generalize the studies of the density matrix of a light field undergoing k-photon absorption, in this paper we put the emphasis on the off-diagonal elements. The solution obtained earlier for the diagonal elements describing the photon statistics can be found as a special case but will not be discussed again. The general solution calculated by recursion shows an asymptotic behaviour if the initial photon number is sufficiently high. Only the initial phase information survives. Illustrating the solution we start with coherent light and a generalized coherent state.  相似文献   

19.
The Full-Zone model of a liquid bridge encountered in crystal growth is analyzed via linear stability analysis and three-dimensional spectral element simulations, neglecting gravitational forces, for Prandtl number 0.02. The base state is axisymmetric and steady state. Linear stability predicts the character of flow transitions and the value of Re FZ , the thermocapillary Reynolds number, at which instabilities occur. Previous linear stability findings show that application of a steady, axial magnetic field stabilizes the base state. Previous three-dimensional simulations with no magnetic field predict a first transition that agrees well with linear stability theory. However, these simulations also demonstrated that continued time integration at just slightly higher Re FZ leads to what appears to be periodic flow. Closer inspection and comparison with linear stability theory revealed that this apparent periodicity was actually competition between two steady modes with different axial symmetries. Here an axial magnetic field is applied in three-dimensional simulations and it is verified that the magnetic field does have the intended effect of stabilizing the flow and removing modal competition. The azimuthal flow shows excellent agreement with eigenvectors predicted by linear stability theory.  相似文献   

20.
We employ Monte Carlo simulations to numerically study the temporal evolution and transient oscillations of the population densities, the associated frequency power spectra, and the spatial correlation functions in the (quasi-) steady state in two-dimensional stochastic May-Leonard models of mobile individuals, allowing for particle exchanges with nearest-neighbors and hopping onto empty sites. We therefore consider a class of four-state three-species cyclic predator-prey models whose total particle number is not conserved. We demonstrate that quenched disorder in either the reaction or in the mobility rates hardly impacts the dynamical evolution, the emergence and structure of spiral patterns, or the mean extinction time in this system. We also show that direct particle pair exchange processes promote the formation of regular spiral structures. Moreover, upon increasing the rates of mobility, we observe a remarkable change in the extinction properties in the May-Leonard system (for small system sizes): (1) as the mobility rate exceeds a threshold that separates a species coexistence (quasi-) steady state from an absorbing state, the mean extinction time as function of system size N crosses over from a functional form ∼ e cN /N (where c is a constant) to a linear dependence; (2) the measured histogram of extinction times displays a corresponding crossover from an (approximately) exponential to a Gaussian distribution. The latter results are found to hold true also when the mobility rates are randomly distributed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号