共查询到4条相似文献,搜索用时 0 毫秒
1.
Nucleation of atmospheric aerosol particles 总被引:2,自引:0,他引:2
A significant fraction of the total number of particles present in the atmosphere is formed originally by nucleation from the gas phase. Binary nucleation of sulphuric acid and water, ternary nucleation of sulphuric acid, water and ammonia and ion-induced nucleation are thought to be the most important aerosol nucleation processes in the atmosphere. Within the last two decades, instrumentation to observe and characterize nucleation has improved greatly and numerous observations of nucleation have been made including quantification of the nucleation rate, characterization of the growth process and first chemical characterizations of the freshly formed particles. Nucleation has been observed at many different places in the atmosphere: in the boundary layer, in the free troposphere, in remote locations, in coastal areas, in boreal forests as well as urban areas and pollution plumes. In most cases gaseous sulphuric acid is assumed to be the key precursor gas. After nucleation, other supersaturated substances, especially low vapour pressure organics often take part in the subsequent aerosol growth. Iodine oxides seem to be responsible for nucleation observed in some coastal areas.Recent advances in modelling allow for a kinetic treatment of the nucleation process based on measured thermochemical data for the cluster formation. Considerable improvement over the classical nucleation treatment is expected from this approach.A detailed understanding of atmospheric aerosol nucleation processes is needed as the freshly formed particles directly influence the number concentration and size distribution of the atmospheric aerosol. The formation of clouds and precipitation is affected and influences on climate are anticipated. Anthropogenic emissions influence atmospheric aerosol nucleation processes considerably.Despite the comprehensive research efforts, substantial inconsistencies remain and conflicting results of laboratory studies, model studies as well as atmospheric observations persist. Several key questions about the predictability of atmospheric nucleation in general, about the substances, that take part in nucleation and subsequent growth and about the size and composition of the critical cluster, have not been resolved so far. To cite this article: J. Curtius, C. R. Physique 7 (2006). 相似文献
2.
Nunzio Motta Pierre D. Szkutnik Massimo Tomellini Anna Sgarlata Massimo Fanfoni Fulvia Patella Adalberto Balzarotti 《Comptes Rendus Physique》2006,7(9-10):1046
Quantum dots (QDs) grown on semiconductors surfaces are actually the main researchers' interest for applications in the forthcoming nanotechnology era. New frontiers in nanodevice technology rely on the precise positioning of the nucleation site and on controlling the shape and size of the dots. In this article we will review some recent studies regarding the control of the nucleation process on semiconductor surfaces. A few approaches to form ordered patterns on surfaces are described: natural patterning induced by surface instabilities (as step bunching or step meandering), in situ substrate patterning by Scanning Tunneling Microscopy (STM), high resolution patterning by Focused Ion Beam (FIB). Growth of epitaxial layers of semiconductors (Ge/Si(100) and InAs/GaAs(100)) on patterned surfaces has been studied by STM or Atomic Force Microscopy (AFM) unveiling the way in which the first atoms start to aggregate and identifying their exact nucleation site. Control of the dot size to match the patterning typical wavelength has been achieved by using surfactants on misoriented substrates. STM images acquired in real time allows one to identify the mechanism of Ge cluster formation on patterned Si(100), and to follow the island transition from pre-pyramid to pyramid. Nucleation of ordered Ge dots on SiO2 substrates has been obtained thanks to FIB tight patterning, achieving island densities of 3.5×1010/cm2. To cite this article: N. Motta et al., C. R. Physique 7 (2006). 相似文献
3.
We review models for the nucleation of magnetisation reversal, i.e. the formation of a region of reversed magnetisation in an initially magnetically saturated system. For small particles, models for collective reversal, either uniform (Stoner–Wohlfarth model) or non-uniform like curling, provide good agreement between theory and experiment. For microscopic objects and thin films, we consider two models, uniform (Stoner–Wohlfarth) reversal inside a nucleation volume and a droplet model, where the free energy of an inverse bubble is calculated, taking into account volume energy (Zeeman energy) and surface tension (domain wall energy). In macroscopic systems, inhomogeneities in magnetic properties cause a distribution of energy barriers for nucleation, which strongly influences effects of temperature and applied field on magnetisation reversal. For these systems, macroscopic material parameters like exchange interaction, spontaneous magnetisation and magnetic anisotropy can give an indication of the magnetic coercivity, but exact values for nucleation fields are, in general, hard to predict. To cite this article: J. Vogel et al., C. R. Physique 7 (2006). 相似文献
4.
We address the problem of positive phase-shifting, negative refraction and focusing via a flat lens on the basis of the metamaterial technologies. With this aim, three examples are considered which differ by the technology employed and the operating frequency. The first one concerns negative-zero-positive refraction by using a prism-shaped electromagnetic metamaterial which consists of omega-type inclusion arrays operating at microwaves. The experimental verification was done in this case by angle-resolved transmission measurements. Second, we report on the phase-shift properties of a negative index transmission line which operates at Terahertz frequencies. In order to experimentally demonstrate the left-handed character of the propagation along the line, resulting in a phase advance, we used time domain experiments. At last, focusing by double refraction in a flat negative index lens was demonstrated by the theoretical and experimental mapping of the intensity of the electric field. Such a mapping of the E-field was carried out at near infrared (1.5 μm) by analysis in the time domain and scanning by near field optical microscopy. To cite this article: D. Lippens, C. R. Physique 10 (2009). 相似文献