首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Odashima T  Endoh I  Ishii H 《Talanta》1990,37(12):1163-1168
The equilibria and kinetics of the solvent extraction of gallium(III) from aqueous monochloroacetic acid [HA] media with a benzene solution of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone [PMBP or HL] has been studied at 25 ± 0.1° and an ionic strength of 0.2. The species extracted was found to be GaL3. The value of the acid dissociation constant of PMBP determined spectrophotometrically was 1.17 × 10−4. The values of the partition coefficient of PMBP and the extraction constant of its gallium complex between an aqueous and a benzene phase were found to be 3.72 × 103 and 2.51 × 104, respectively. The rate of extraction was first-order with respect to the concentrations of gallium(III) in the aqueous phase and PMBP in the organic phase, inversely first- and second-order with respect to the hydrogen-ion concentration and zero- and first-order with respect to the concentration of monochloroacetate ions. Two mechanisms operate for this extraction, depending on the pH of the aqueous phase, one where the formation of the first complex, GaL2+, between Ga3+ and L in the region of pH < 1.6 becomes the rate-determining step, and the other where the formation of the first complex between GaA2+ and L in the region of pH 2.0–2.3 is the rate-determining step. The rate constant for the first of these reactions was calculated to be 1.62 × 104l.mole−1.sec−1, but that for the second could not be determined.  相似文献   

2.
Sultan SM  Desai NI 《Talanta》1998,45(6):1061-1071
For the first time, the robust sequential injection (SI) technique has been employed for full kinetic investigation of the oxidation reaction of vitamin C. Iron(III) in sulphuric acid media was used as an oxidant and 1,10-phenanthroline as an indicator and the resulting solution of tris 1,10-phenanthroline-iron(II) complex was monitored spectrophotometrically at 510 nm. The reaction orders with respect to each reagent were determined by the SI-technique and were found to be 1, 1, and −1 for vitamin C, iron(III) and hydrogen ions respectively. On the basis of these values a rate law was developed and a plausible mechanism was established. A kinetic method for the analysis of vitamin C in drug formulations based on the results obtained above was thus validated. The drug in the range 20–300 ppm was determined by the kinetic method using 1.6×10−3 mol dm−3 ammonium ferric sulphate in 0.02 mol dm−3 sulphuric acid with the aspiration volume of 944 μl and the fixed-time of 180 s. The results thus obtained by the SI-kinetic method were statistically compared with those obtained by the British Pharmacoebia standard method and found to be accurate, precise and fast.  相似文献   

3.
The kinetics of the oxidation of [RuIII(edta)(H2O)] (edta=ethylenediaminetetraacetate) (complex-1) with pyridine N-oxide (PyO) to [RuV(edta)O] (complex-2) and subsequent oxo-transfer from complex-2 to dimethylsulfide (dms) leading to the formation of dimethylsulfoxide (dmso) have been studied spectrophotometrically. The rate of formation of oxo-complex (2) in the reaction of complex-1 with PyO was found to be substitution controlled and first order both in complex-1 and PyO concentrations. The rate of oxo transfer from complex-2 to dms was found to be first order with respect to [complex-2] and [dms]. Kinetic data and activation parameters are found to be consistent to the proposed mechanism.  相似文献   

4.
Sultan SM  Hassan YA  Abulkibash AM 《Talanta》2003,59(6):1073-1080
For the first time, promethazine hydrochloride chemiluminescence emission was monitored. The paper describes a new, specific and highly sensitive flow injection (FI) method for the determination of promethazine hydrochloride using both a peristaltic and a syringe pump. The method was based on the chemiluminescence emission intensity produced as a result of its oxidation reaction with permanganate in sulfuric acid medium. Reaction variables were thoroughly investigated employing chemometrical methods with few number of experiments. The optimum system and chemical conditions were 2.1519×10−4 mol l−1 permanganate in 0.01 mol l−1 sulfuric acid when operating the peristaltic pump at a flow rate of 45 μl s−1 and injecting the drug by a syringe pump operated at a speed of 40 μl s−1. The method was found to be applicable in the concentration range of promethazine hydrochloride between 1.558×10−5 and 1.8697×10−3 mol l−1 with a linear calibration plot of 0.992 correlation coefficient and the following equation: I=92.74+0.08048C. The method adopted proved to be highly suitable for the assay of promethazine hydrochloride in drug formulations without fear of interferences in dosage form.  相似文献   

5.
The paper describes the determination of the molybdenum content in white wines based on its catalytical action on the kalium iodide oxidation by hydrogen peroxide in acid medium.

The optimum reaction conditions (the catalyst, KI and H2O2 concentrations, the pH value, the order of the reagent additions, the temperature) have been found by studying the effect of the reaction variables.

The influence of some metallic ions (Ca2+, Mg2+, Zn2+, Cd2+, Fe2+ and Fe3+) and complexing anions (F, C2O2−4, EDTA4−) on the catalyzed reaction rate was elucidated.

The molybdenum concentration was estimated by the tangent, fixed-time and fixed-absorbance method. The obtained average values for molybdenum content in white wines are within the 1.77×10−7–1.83×10−7 mol l−1 range.  相似文献   


6.
Studies on the photoinduced sulfonation of hypocrellins   总被引:2,自引:0,他引:2  
Hypocrellin A (HA) and hypocrellin B (HB) are efficient phototherapeutic agents. Irradiation of HB with visible light in the presence of sodium sulfite in water-pyridine or water-N,N-dimethylformamide (1:1, v/v) solution gives hypocrellin B-5-sulfonic acid and hypocrellin B-5,8-disulfonic acid. HA reacts similarly under the same conditions. Electron spin resonance and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin trapping studies indicate that this photoreaction is initiated by the photoinduced electron transfer between HB and sodium sulfite to produce the semiquinone radical anion of HB (HB.−) and the sulfur trioxide radical anion (·SO3-). The intermediates (HB.− and 5-SO3-HB.−) produced from the photolysis process have also been observed in absorption spectra. The attack of ·SO3 on HB at the 5 and/or 8 positions to form the sulfonated products has been verified by quenching experiments. The effects of air and pH on the sulfonation reaction have been investigated. On the basis of the experimental evidence, the reaction pathway for the photoreaction is proposed.  相似文献   

7.
A catalytic flow-injection (FI) method was developed for the determination of 10−9 mol l−1 levels of vanadium(IV, V). The method is based on the catalytic effect of vanadium(V) on oxidation of N-(3-sulfopropyl)-3,3′,5,5′-tetramethylbenzidine (TMBZ·PS) using bromate as oxidant to form a yellow dye (λmax=460 nm). The use of 5-sulfosalicylic acid (SSA) as an activator enhanced the sensitivity of the method. The calibration graphs with a working range 0.05–8.0 ng ml−1 were obtained for vanadium(V). Vanadium(IV) was also determined, being oxidized by bromate. The detection limit (signal/noise, S/N=3) was 0.01 ng ml−1 (ca. 2×10−10 mol l−1) vanadium. The relative standard deviations (R.S.D.) for 15 determinations of 0.5 ng ml−1 vanadium, and for ten determinations of 0.1 and 1.0 ng ml−1 vanadium were 0.41, 2.6 and 0.25%, respectively, with a sampling rate of 15 samples h−1. The proposed method was successfully applied to the determination of vanadium in natural waters.  相似文献   

8.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

9.
The rate constants at which oxidizing and reducing radicals react with the dinuclear iron(III) complex Fe2O(ttha)2− were measured in neutral aqueous solution. The rate constants for reduction of the complex by ·CO2.− CH3.CHOH and O2.− were found to be comparable with rate constants previously measured in mononuclear iron(III) polyaminocarboxylate systems. Fe2O(ttha)2− reacts slowly with O2.− (k8 = (1.2 ± 0.2) × 104 dm3 mol−1 s−1) and, hence, is a relatively poor catalyst for the dismutation of superoxide radical. The hydrated electron reduces the complex at a diffusion-controlled rate in a process which consumes one proton: eaq + Fe2O(ttha)2− → Fe2III,IIO(ttha)3− The reduction by carbon-centered radicals produces a (III,II) mixed-valence complex with an absorption spectrum different from that of the Fe2(II,III) species produced from reduction by the hydrated electron. The oxidizing radicals .OH and ·CO3 appear to act as reductants of the complex via ligand oxidation rather than by oxidation of the Fe2IIIO core to Fe2III,IVO. In the former case ligand attack appears to occur mainly at the methylene carbon of a glycinate group. The decarboxylation product, CO2, was detected by its aquation reaction in the presence of a pH sensitive dye, bromthymol blue.  相似文献   

10.
A highly sensitive and selective method is described for the determination of trace amounts of nitrite based on its effect on the oxidation of carminic acid with bromate. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of carminic acid at 490 nm after 3 min of mixing the reagents. The optimum reaction conditions were 1.8×10−1 mol l−1 H2SO4, 3.8×10−3 mol l−1 KBrO3, and 1.2×10−4 mol l−1 carminic acid at 30°C. By using the recommended procedure, the calibration graph was linear from 0.2 to 14 ng ml−1 of nitrite; the detection limit was 0.04 ng ml−1; the R.S.D. for six replicate determinations of 6 ng ml−1 was 1.7%. The method is mostly free from interference, especially from large amounts of nitrate and ammonium ions. The proposed method was applied to the determination of nitrite in rain and river water.  相似文献   

11.
A HPLC method with automated column switching and UV-diode array detection is described for the simultaneous determination of Vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in a sample of human plasma. The system uses a BioTrap precolumn for the on-line sample cleanup. A sample of 1 ml of human plasma was treated with 2 ml of a mixture of ethanol–acetonitrile (2:1 (v/v)). Following centrifugation, the supernatant was evaporated to dryness under a stream of dry and pure nitrogen. The residue was reconstituted in 250 μL of a solution of methanol 5 mmol l−1 phosphate buffer, pH 6.5 (4:1 (v/v)), and a 200 μl aliquot of this solution was injected onto the BioTrap precolumn. After washing during 5 min with a mobile phase constituted by a solution of 6% acetonitrile in 5 mmol l−1 phosphate buffer, pH 6.5 (extraction mobile phase), the retained analytes were then transferred to the analytical column in the backflush mode. The analytical separation was then performed by reverse-phase chromatography in the gradient elution mode with the solvents A and B (Solvent A: acetonitrile–phosphate buffer 5 mmol l−1, pH 6.5; 20:80 (v/v); solvent B: methanol–acetonitrile–tetrahydrofuran, 65:20:15 (v/v)). The compounds of interest were detected at 265 nm. The method was linear in the range 3.0–32.0 ng ml−1 with a limit of quantification of 3.0 ng ml−1. Quantitative recoveries from spiked plasma samples were between 91.0 and 98.0%. In all cases, the coefficient of variation (CV) of the intra-day and inter-day-assay precision was ≤2.80%. The proposed method permitted the simultaneous determination of Vitamin D3 and 25-OH-D3 in 16 min, with an adequate precision and sensitivity. However, the overlap of the sample cleanup step with the analysis increases the sampling frequency to five samples h−1. The method was successfully applied for the determination of Vitamin D3 and 25-OH-D3 in plasma from 46 female volunteers, ranging from 50 to 94 years old. Vitamin D3 and 25-OH-D3 concentrations in plasma were found from 4.30–40.70 ng ml−1 (19.74 ± 9.48 ng ml−1) and 3.1–36.52 ng ml−1 (7.13 ± 7.80 ng ml−1), respectively. These results were in good agreement with data published by other authors.  相似文献   

12.
Caffeine (1,3,7-trimethylxanthine), theobromine (3,7-dimethylxanthine) and theophylline (1,3-dimethylxanthine) are the most important naturally occurring methylxanthines. Caffeine is a constituent of coffee and other beverage and included in many medicines. Theobromine and theophylline are formed as metabolites of caffeine in humans, and are also present in tea, cocoa and chocolate products.

In order to improve the chromatographic resolution (Rs) with a good analysis time, experimental designs were applied for multivariate optimisation of the experimental conditions of an isocratic reversed-phase high-performance liquid chromatographic (RP-HPLC) method used for the simultaneous determination of caffeine, theobromine and theophylline. The optimisation process was carried out in two steps using full three-level factorial designs. The factors optimised were: flow rate and mobile phase composition. Optimal conditions for the separation of the three methylxanthines were obtained using a mixture of water/ethanol/acetic acid (75:24:1%, v/v/v) as mobile phase and a flow rate of 1.0 mL min−1. The RP-HPLC/UV method was validated in terms of limit of detection (LOD), limit of quantitation (LOQ), linearity, recovery and the precision, calculated as relative standard deviation (R.S.D.). In these conditions, the LOD was 0.10 μg L−1 for caffeine, 0.07 μg L−1 for theobromine and 0.06 μg L−1 for theophylline. The proposed method is fast, requires no extraction step or derivatization and was suitable for quantification of these methylxanthines in coffee, tea and human urine samples.  相似文献   


13.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

14.
Wang Q  Li N 《Talanta》2001,55(6):243-1225
The thiolactic acid (TLA) self-assembled monolayer modified gold electrode (TLA/Au) is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 5.11×10−3 cm s−1 at the self-assembled electrode. The electrode reaction is a pseudo-reversible process. The peak current and the concentration of NE are a linear relationship in the range of 4.0×10−5–2.0×10−3 mol l−1. The detection limit is 2.0×10−6 mol l−1. By ac impedance spectroscopy the apparent electron transfer rate constant (kapp) of Fe(CN)3−/Fe(CN)4− at the TLA/Au electrode was obtained as 2.5×10−5 cm s−1.  相似文献   

15.
Free radical reactions of dehydrozingerone (DZ), a methoxy phenol, were studied at dfferent pHs with a variety of oxidants using nanosecond pulse radiolysis technique. Hydroxyl radical (OH) reaction with the phenolic form at pH 6 led mainly to the formation of an OH-adduct absorbing at 460 nm in addition to a minor oxidation product. On the other hand, at pH 10 with the deprotonated phenoxide ion, the only reaction observable was oxidation generating a phenoxyl radical absorbing at 360 nm. HPLC analysis indicated formation of two different products at pH 6 from addition and oxidation reactions, whereas at pH 10, only the oxidation product was detectable. Reactions of more specific secondary oxidizing radicals, N3√, Br√, Br2√ and Tl(II) with DZ gave rise to the phenoxyl radical over the entire pH range. DZ in the phenoxide ion form reacted with nitrogen dioxide and trichloromethyl peroxyl radicals with rate constants 6×108 and 8.8×108 dm3 mol−1 s−1 respectively leading to the phenoxyl radicals. The DZ phenoxyl radical reacted with trolox C (an analogue of -tocopherol) with a rate constant of 8.3×107 dm3 mol−1 s−1. One electron reduction potential of the DZ phenoxyl radical at pH 6 was determined to be +1.1 V vs NHE using N3√/N3 as the standard couple.  相似文献   

16.
A new, highly sensitive and simple kinetic method for the determination of thyroxine was proposed. The method was based on the catalytic effect of thyroxine on the oxidation of As(III) by Mn(III) metaphosphate. The kinetics of the reaction was studied in the presence of orthophosphoric acid. The reaction rate was followed spectrophotometrically at 516 nm. It was established that orthophosphoric acid increased the reaction rate and that the extent of the non-catalytic reaction was extremely small. A kinetic equation was postulated and the apparent rate constant was calculated. The dependence of the reaction rate on temperature was investigated and the energy of activation and other kinetic parameters were determined.

Thyroxine was determined under the optimal experimental conditions in the range 7.0 × 10−9 to 3.0 × 10−8 mol L−1 with a relative standard deviation up to 6.7% and a detection limit of 2.7 × 10−9 mol L−1. In the presence of 0.08 mol L−1 chloride, the detection limit decreased to 6.6 × 10−10 mol L−1. The proposed method was applied for the determination of thyroxine in tablets. The accuracy of the method was evaluated by comparison with the HPLC method.  相似文献   


17.
J. J. Kipling  G. Grimes 《Talanta》1960,5(3-4):278-281
For a satisfactory determination of iodide by Andrews' method, the concentration of hydrochloric acid in the solution should not fall below 3N. A high concentration of each ion is required; that of chloride ion is much greater than is needed for conversion of ICl to ICl2. The effects of varying the concentrations of H+, Cl and indifferent ions on the rate of the slow stage (oxidation of I2 to ICl) are demonstrated.  相似文献   

18.
Nakano S  Tanaka K  Oki R  Kawashima T 《Talanta》1999,49(5):85-1082
A sensitive flow-injection spectrophotometric procedure is proposed for the determination of manganese(II), based on its catalytic effect on the oxidation of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with periodate. By monitoring the change in absorbance of the oxidation product of ABTS at 415 nm, manganese(II) in the range 0.05–1.0 ng ml−1 can be determined with a sampling frequency of 30 h−1. A relative standard deviation (R.S.D.) (n=10) is 1.6% at the 0.5 ng ml−1 level. The proposed method suffers from few interferences and has been successfully applied to the determination of manganese in river, lake and seashore water samples.  相似文献   

19.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

20.
The oxidation reaction of 2-aminophenol (OAP) to 2-aminophenoxazin-3-one (APX) initiated by 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) has been investigated in methanol at ambient temperature. The oxidation of OAP was followed by electronic spectroscopy and the rate constants were determined according to the rate law −d[OAP]/dt=kobs[OAP][TEMPO]. The rate constant, activation enthalpy and entropy at 298 K are as follows: kobs (dm3 mol−1 s−1)=(1.49±0.02)×10−4, Ea=18±5 kJ mol−1, ΔH=15±4 kJ mol−1, ΔS=−82±17 J mol−1 K−1. The results of oxidation of OAP show that the formation of 2-aminophenoxyl radical is the key step in the activation process of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号