首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
2.
This work examines the effect of inter-particle collisions on the motion of solid particles in two-phase turbulent pipe and channel flows. Two mechanisms for the particle–particle collisions are considered, with and without friction sliding. Based on these collision mechanisms, the correlations of the various velocity components of colliding particles are obtained analytically by using an averaging procedure. This takes into account three collision coordinates, two angles and the distance between the centers of colliding particles. The various stress tensor components are obtained and then introduced in the mass, linear momentum and angular momentum equations of the dispersed phase. The current approach applies to particle–particle collisions that result from both the average velocity difference and the turbulent velocity fluctuations. In order to close the governing equations of the dispersed phase, the pseudo-viscosity coefficients are defined and determined by the time of duration of the inter-particle collision process. The model is general enough to apply to both polydisperse and monodisperse particulate systems and has been validated by comparisons with experimental data.  相似文献   

3.
4.
This paper presents a review of authors' collective works in the field of two-phase flow modeling done in the past few decades. The paper is aimed at the construction of mathematical models for simulation of particle-laden turbulent flows. A kinetic equation was obtained for the probability density function (PDF) of the particle velocity distribution in turbulent flows. The proposed kinetic equation describes both the interaction of particles with turbulent eddies of the carrier phase and particle-particle collisions. This PDF equation is used for the derivation of different schemes describing turbulent momentum transfer in the dispersed particle phase. The turbulent characteristics of the gaseous phase are calculated on the basis of the k - turbulence model with a modulation effect of particles on the turbulence.

The constructed models have been applied to the calculation of various two-phase gas-particle turbulent flows in jets and channels as well as particle deposition in tubes and separators. For validating the theoretical and numerical results, a wide range of comparisons with experimental data from Russian and foreign sources has been done.  相似文献   


5.
Turbulence modulation due to its interaction with dispersed solid particles in a downward fully developed channel flow was studied. The Eulerian framework was used for the gas-phase, whereas the Lagrangian approach was used for the particle-phase. The steady-state equations of conservation of mass and momentum were used for the gas-phase, and the effect of turbulence on the flow-field was included via the standard kε model. The particle equation of motion included the drag, the Saffman lift and the gravity forces. Turbulence dispersion effect on the particles was simulated as a continuous Gaussian random field. The effects of particles on the flow were modeled by appropriate source terms in the momentum, k and ε equations. Particle–particle collisions and particle–wall collisions were accounted for in these simulations. Gas-phase velocities and turbulence kinetic energy in the presence of 2–100% mass loadings of two particle classes (50 μm glass and 70 μm copper) were evaluated, and the results were compared with the available experimental data and earlier numerical results. The simulation results showed that when the inter-particle collisions were important and was included in the computational model, the fluid turbulence was attenuated. The level of turbulence attenuation increased with particle mass loading, particle Stokes number, and the distance from the wall. When the inter-particle collisions were negligible and/or was neglected in the model, the fluid turbulence was augmented for the range of particle sizes considered.  相似文献   

6.
稠密气固两相流各向异性颗粒相矩方法   总被引:1,自引:0,他引:1  
基于气体分子动力学和颗粒动理学方法,考虑颗粒速度脉动各向异性,建立颗粒相二阶矩模型.应用初等输运理论,对三阶关联项进行模化和封闭.考虑颗粒与壁面之间的能量传递和交换,建立颗粒相边界条件模型.采用Koch等计算方法模拟气固脉动速度关联矩.考虑气体-颗粒间相互作用,建立稠密气体-颗粒流动模型.数值模拟提升管内气固两相流动特性,模拟结果表明提升管内颗粒相湍流脉动具有明显的各向异性.预测颗粒速度、浓度和颗粒脉动速度二阶矩与Tartan等实测结果相吻合.模拟结果表明轴向颗粒速度脉动强度约为平均颗粒相脉动强度的1.5倍,轴向颗粒脉动能大约是径向颗粒脉动能3.0倍.  相似文献   

7.
8.
A numerical calculation is carried out by the finite-difference method based on proposed equations for a turbulent submerged jet containing an admixture of solid particles. The relative longitudinal particle velocity and the influence of particles on the turbulence intensity are taken into account. The calculated results adequately agree with available experimental data. A turbulent two-phase jet is examined in [1] on the basis of the theory for a variable density jet, assuming equal mean velocities for the gas and particles and not considering the influence of particles on the turbulence intensity. Particles are analogously taken into account by a noninertial gas mixture in [2, 3], and a particle Schmidt number of 1.1 is assumed in [4]. A model is proposed in [5] which takes into account the influence of particles on the turbulence intensity of the gas phase. Problems concerning the initial and main sections of a submerged jet were solved in [6] by the integral method on the basis of this model and the assumed equality of the mean velocities of the gas and particles. Turbulent mixing of homogeneous two-phase flows with allowance made for dynamic nonequilibrium of the phases is considered in [7]. However, the neglect of turbulent transfer of particle mass and momentum led to a physically unrealistic solution for the particle concentration in the far field of the mixture. A two-phase jet is considered in the present work on the basis of the theory of a two-velocity continuous medium [8, 9] with allowance made for turbulent transfer of particle mass and momentum. The influence of particles on the turbulence intensity of the gas phase is taken into account with the model of [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 57–63, September–October, 1976.The author acknowledges useful comments and discussion.of the work by G. N. Abramovich and participants of his seminar. The author sincerely thanks I. N. Murzinov for scientific supervision of the work.  相似文献   

9.
10.
Governing equations for a two‐phase 3D helical pipe flow of a non‐Newtonian fluid with large particles are derived in an orthogonal helical coordinate system. The Lagrangian approach is utilized to model solid particle trajectories. The interaction between solid particles and the fluid that carries them is accounted for by a source term in the momentum equation for the fluid. The force‐coupling method (FCM), developed by M.R. Maxey and his group, is adopted; in this method the momentum source term is no longer a Dirac delta function but is spread on a numerical mesh by using a finite‐sized envelop with a spherical Gaussian distribution. The influence of inter‐particle and particle–wall collisions is also taken into account. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Short particle residence time in entrained flow gasifiers demands the use of pulverized fuel particles to promote mass and heat transfer, resulting high fuel conversion rate. The pulverized biomass particles have a wide range of aspect ratios which can exhibit different dispersion behavior than that of spherical particles in hot product gas flows. This results in spatial and temporal variations in temperature distribution, the composition and the concentration of syngas and soot yield. One way to control the particle dispersion is to impart a swirling motion to the carrier gas phase. This paper investigates the dispersion behavior of biomass fuel particles in swirling flows. A two-phase particle image velocimetry technique was applied to simultaneously measure particle and gas phase velocities in turbulent isothermal flows. Post-processed PIV images showed that a poly-dispersed behavior of biomass particles with a range of particle size of 112–160 µm imposed a significant impact on the air flow pattern, causing air flow decelerated in a region of high particle concentration. Moreover, the velocity field, obtained from individually tracked biomass particles showed that the swirling motion of the carrier air flow gives arise a rapid spreading of the particles.  相似文献   

12.
In gas–solid flat-base spout bed with a jet, the flow of particles must go through an intermediate regime where both kinetic/collisional and frictional contributions play a role. In this paper, the statistical framework is proposed to define the generalized granular temperature which sums up the configurational temperature and translational granular temperature. The configurational temperature, translational and rotational granular temperatures of particles are simulated by means of CFD-DEM (discrete element method) in a 3D flat-base spout bed with a jet. The configurational temperatures of particles are calculated from instantaneous overlaps of particles. The translational and rotational granular temperatures of particles are calculated from instantaneous translational and angular velocities of particles. Roughly, the simulated translational and rotational granular temperatures increase, reach maximum, and then decrease with the increase of solids volume fractions. However, the configurational temperature increases with the increase of solids volume fractions. At high solid volume fraction, the predicted configurational temperatures are larger than the translational and rotational granular temperatures, indicating that the rate of energy dissipation do contributes by contact deformation of elastic particles. The generalized granular temperature is proposed to show the relation between the variance of the fluctuation velocity of deformation and the variance of the translational fluctuation velocity of particles. The constitutive relations of particle pressure, viscosity, granular conductivity of fluctuating energy and energy dissipation in rapid-intermediate-dense granular flows are correlated to the generalized granular temperature. The variations of particle pressure, shear viscosity, energy dissipation and granular conductivity are analyzed on the basis of generalized granular temperature in a flat-base spout bed with a jet. The axial velocities of particles predicted by a gas–solid two-fluid model of rapid-intermediate-dense granular flows agree with experimental results in a spout bed.  相似文献   

13.
14.
In gas-solid flows,particle-particle interaction(typical,particle collision) is highly significant,despite the small particles fractional volume.Widely distributed polydisperse particle population is a typical characteristic during dynamic evolution of particles(e.g.,agglomeration and fragmentation) in spite of their initial monodisperse particle distribution.The conventional direct simulation Monte Carlo(DSMC)method for particle collision tracks equally weighted simulation particles,which results in high statistical noise for particle fields if there are insufficient simulation particles in less-populated regions.In this study,a new differentially weighted DSMC(DW-DSMC) method for collisions of particles with different number weight is proposed within the framework of the general Eulerian-Lagrangian models for hydrodynamics.Three schemes(mass,momentum and energy conservation) were developed to restore the numbers of simulation particle while keeping total mass,momentum or energy of the whole system unchanged respectively.A limiting case of high-inertia particle flow was numerically simulated to validate the DW-DSMC method in terms of computational precision and efficiency.The momentum conservation scheme which leads to little fluctuation around the mass and energy of the whole system performed best.Improved resolution in particle fields and dynamic behavior could be attained simultaneously using DW-DSMC,compared with the equally weighted DSMC.Meanwhile,computational cost can be largely reduced in contrast with direct numerical simulation.  相似文献   

15.
We report on velocity fluctuations and the fluctuation-driven radial transport of angular momentum in turbulent circular Couette flow. Our apparatus is short (cylinder height to gap width ratio Γ ~ 2) and of relatively high wall curvature (ratio of cylinder radii η ~ 0.35). Fluctuation levels and the mean specific angular momentum are found to be roughly constant over radius, in accordance with previous studies featuring narrower gaps. Synchronized dual beam Laser Doppler Velocimetry (2D LDV) is used to directly measure the r − θ Reynolds stress component as a function of Reynolds number (Re), revealing approximate scalings in the non-dimensional angular momentum transport that confirm previous measurements of torque in similar flows. 2D LDV further allows for a decomposition of the turbulent transport to assess the relative roles of fluctuation intensity and r − θ cross-correlation. We find that the increasing angular momentum transport with Re is due to intensifying absolute fluctuation levels accompanied by a slightly weakening cross-correlation.  相似文献   

16.
The purpose of this paper is to present and compare two statistical models for predicting the effect of collisions on particle velocities and stresses in bidisperse turbulent flows. These models start from a kinetic equation for the probability density function (PDF) of the particle velocity distribution in a homogeneous anisotropic turbulent flow. The kinetic equation describes simultaneously particle–turbulence and particle–particle interactions. The paper is focused on deriving the collision terms in the governing equations of the PDF moments. One of the collision models is based on a Grad-like expansion for the PDF of the velocity distributions of two particles. The other model stems from a Grad-like expansion for the joint fluid–particle PDF. The validity of these models is explored by comparing with Lagrangian simulations of particle tracking in uniformly sheared and isotropic turbulent flows generated by LES. Notwithstanding the fact that the fluid turbulence may be isotropic, the particle velocity fluctuations are anisotropic due to the impact of gravitational settling. Comparisons of the model predictions and the numerical simulations show encouraging agreement.  相似文献   

17.
In [1–4] the laws of decay of the average and fluctuating velocities in momentumless turbulent wakes were experimentally investigated with and without swirl. In [5, 6] unswirled momentumless wakes and in [7] wakes with a nonzero angular momentum were theoretically investigated. However, turbulent wakes with zero momentum and angular momentum were not covered by these investigations. This class of flows is the subject of the present study.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 35–41, September–October, 1993.  相似文献   

18.
In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle–particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two 1 mm radius particles with initial particle velocities of 50–150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic–plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic–plastic material behavior results in post collision velocities 16–50% of their pre-collision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic–plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic–plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion.  相似文献   

19.
In gas–solid flows, particle–particle interaction (typical, particle collision) is highly significant, despite the small particles fractional volume. Widely distributed polydisperse particle population is a typical characteristic during dynamic evolution of particles (e.g., agglomeration and fragmentation) in spite of their initial monodisperse particle distribution. The conventional direct simulation Monte Carlo (DSMC) method for particle collision tracks equally weighted simulation particles, which results in high statistical noise for particle fields if there are insufficient simulation particles in less-populated regions. In this study, a new differentially weighted DSMC (DW-DSMC) method for collisions of particles with different number weight is proposed within the framework of the general Eulerian–Lagrangian models for hydrodynamics. Three schemes (mass, momentum and energy conservation) were developed to restore the numbers of simulation particle while keeping total mass, momentum or energy of the whole system unchanged respectively. A limiting case of high-inertia particle flow was numerically simulated to validate the DW-DSMC method in terms of computational precision and efficiency. The momentum conservation scheme which leads to little fluctuation around the mass and energy of the whole system performed best. Improved resolution in particle fields and dynamic behavior could be attained simultaneously using DW-DSMC, compared with the equally weighted DSMC. Meanwhile, computational cost can be largely reduced in contrast with direct numerical simulation.  相似文献   

20.
 We describe a number of different phenomena seen in the free-surface flow inside a partially filled circular cylinder which is rotated about its horizontal axis of symmetry. At low angular velocities the flow settles into a steady two-dimensional flow with a front where the coating film coalesces with the pool at the bottom of the cylinder. This mode becomes unstable at higher angular velocities, initially to a sloshing mode on the rising side of the coating film and then to an axial instability on the front. The undulations that appear on the front grow into large-amplitude stationary patterns with cusp-like features for some parameter values. At still higher angular velocities and volume fractions, a number of different inertial instabilities and patterns appear. We present a phase diagram of the various transitions and characterize some of the more prominent instabilities and patterns in detail, along with some possible mechanisms for the observed behaviour. Received: 13 April 1996 / Accepted: 13 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号