首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents the results of flow boiling heat transfer in a minichannel 1.0 mm deep and 40 mm wide, vertically oriented. The heating element for the working fluid (FC-72) that flows along the vertical minichannel is thin, single-sided enhanced alloy foil. In the selected area or on the entire enhanced side of the heating foil mini-reentrant cavities distributed unevenly were formed. Liquid crystal thermography has been used for measuring the two-dimensional temperature distribution on the plain side of the heating foil. Simultaneously, the observations of the flow structures have been carried out on the enhanced side of the heating foil contacting fluid in a minichannel. The results are presented as void fraction dependence along the minichannel length for the selected cross-sections. Exemplary boiling curves obtained from initial increasing and subsequent decreasing the heat flux supplied to the foil are also presented.  相似文献   

2.
A method is developed to capture the distribution of surface temperature while simultaneously imaging the bubble motions in diabatic flow boiling in a horizontal minichannel. Liquid crystal thermography is used to obtain highly resolved surface temperature measurements on the uniformly heated upper surface of the channel. High-speed images of the flow field are acquired simultaneously and are overlaid with the thermal images. The local surface temperature and heat transfer coefficient can be analyzed with the knowledge of the nucleation site density and location, and bubble motion and size evolution. The horizontal channel is 1.2 mm high × 23 mm wide × 357 mm long, and the working fluids are Novec 649 and R-11. Optical access is through a machined glass plate which forms the bottom of the channel. The top surface is an electrically heated 76 μm-thick Hastelloy foil held in place by a water-cooled aluminum and glass frame. The heat loss resulting from this construction is computed using a conduction model in Fluent. The model is driven by temperature measurements on the foil, glass plate and aluminum frame. This model produces a corrected value for the local surface heat flux and enables the computation of the bulk fluid temperature and heat transfer coefficient along the channel. The streamwise evolution of the heat transfer coefficient for single-phase laminar flow is compared to theoretical values for a uniform-flux boundary condition. Examples of the use of the facility for visualizing subcooled two-phase flows are presented. These examples include measurements of the surface temperature distribution around active nucleation sites and the construction of boiling curves for locations along the test surface. Points on the curve can be associated with specific image sequences so that the role of mechanisms such as nucleation and the sliding of confined bubbles may be discerned.  相似文献   

3.
The transient process of thermal stratification in liquid nitrogen (LN2) induced by lose of vacuum in a multi-layer insulated cryogenic tank is investigated both experimentally and numerically. In the experiments, distribution and evolution of the liquid temperature is obtained using thermocouples. Then, two-dimensional numerical computations are performed, using the two-fluid model together with nucleate boiling model as the closure correlations. Comparison of the numerical results against the experimental data illustrates that the process of thermal stratification forming and weakening, as well as the liquid temperature field are satisfactorily simulated. The computed results of liquid flow field contribute to the understanding of this transient process. It is also demonstrated that the two-phase flow in the tank plays an important role on thermal stratification.  相似文献   

4.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

5.
Flow boiling behaviors in hydrophilic and hydrophobic microchannels   总被引:1,自引:0,他引:1  
Surface wettability is a critical parameter in small scale phenomena, especially two-phase flow, since the surface force becomes dominant as size decreases. In present study, experiments of water flow boiling in hydrophilic and hydrophobic rectangular microchannels were conducted to investigate the wettability effect on flow boiling in rectangular microchannels. The rectangular microchannels were fabricated with a photosensitive glass to visualize flow pattern. The hydrophilic bare photosensitive glass microchannel was chemically treated to obtain a hydrophobic microchannel. And, visualization of flow patterns was carried out. And boiling heat transfer and two-phase pressure drop was analyzed with visualization results. The boiling heat transfer coefficient in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with nucleation site density and liquid film motion. And the pressure drop in the hydrophobic rectangular microchannel was higher than that in the hydrophilic rectangular microchannel, which was highly related with unstable motions of bubble and liquid film. Finally, we find out the wettability is important parameter on the flow pattern, which were highly related with two-phase heat and mass transfer.  相似文献   

6.
The role of incident shock waves in the initiation of vapor explosions in volatile liquid hydrocarbons has been investigated. Experiments were carried out on single droplets (1–2 mm diameter) immersed in a host fluid and heated to temperatures at or near the limit of superheat. Shocks generated by spark discharge were directed at previously nonevaporating drops as well as at drops boiling stably at high pressure. Explosive boiling is triggered in previously nonevaporating drops only if the drop temperature is above a threshold temperature that is near the superheat limit. Interaction of a shock with a stably boiling drop immediately causes a transition to violent unstable boiling in which fine droplets are torn from the evaporating interface, generating a two-phase flow downstream. On the previously nonevaporating interface between the drop and the host liquid, multiple nucleation sites appear which grow rapidly and coalesce. Overpressures generated in the surrounding fluid during bubble collapse may reach values on the same level as the pressure jump across the shock wave that initiated the explosive boiling. A simple calculation is given, which suggests that shock focusing may influence the location at which unstable boiling is initiated.  相似文献   

7.
Waves propagating along the interface between a thin vapor film and a liquid layer in the presence of a heat flux are investigated. The boundary conditions on the vapor-liquid phase surface take into account the temperature dependence of the pressure and the possibilities of formation of the metastable state of the superheated liquid and mass flow. Variations in the saturation pressure as functions of the temperature and mass flux lead to generation of weakly damped periodic waves of low amplitude whose velocity can be much higher than the velocity of the gravity waves. The waves ensure stability of the vapor film beneath the liquid layer in the gravity field. The finite-amplitude waves on the surface of the vapor film differ from the Stokes surface waves on the free surface of isothermal fluid. Instability regimes related with superheating of the liquid ant its explosive boiling when the amplitude of an initially small wave increases to infinity in a finite time can develop in a certain working-parameter regime.  相似文献   

8.
This study addresses gas–liquid two-phase flows in polymer (PMMA) micro-channels with non-molecularly smooth and poorly wetting walls (typical contact angle of 65°) unlike previous studies conducted on highly wetting molecularly smooth materials (e.g., glass/silicon). Four fundamentally different topological flow regimes (Capillary Bubbly, Segmented, Annular, Dry) were identified along with two transitory ones (Segmented/Annular, Annular/Dry) and regime boundaries were identified from the two different test chips. The regime transition boundaries were influenced by the geometry of the two-phase injection, the aspect ratio of the test micro-channels, and potentially the chip material as evidenced from comparisons with the results of previous studies. Three principal Segmented flow sub-regimes (1, 2, and 3) were identified on the basis of quantified topological characteristics, each closely correlated with two-phase flow pressure drop trends. Irregularity of the Segmented regimes and related influencing factors were addressed and discussed. The average bubble length associated with the Segmented flows scaled approximately with a power law of the liquid volumetric flow ratio, which depends on aspect ratio, liquid superficial velocity, and the injection system. A simplified semi-empirical geometric model of gas bubble and liquid plug volumes provided good estimates of liquid plug length for most of the segmented regime cases and for all test-channel aspect ratios. The two-phase flow pressure drop was measured for the square test channels. Each Segmented flow sub-regime was associated with different trends in the pressure drop scaled by the viscous scale. These trends were explained in terms of the quantified flow topology (measured gas bubble and liquid plug lengths) and the number of bubble/plug pairs. Significant quantitative differences were found between the two-phase pressure drop in the polymer micro-channels of this study and those obtained from previous glass/silicon micro-channel studies, indicating that the effect of wall surface properties is important. Pressure drop trends on the capillary scale along gas bubbles extracted from the measurements in square micro-channels indicated a linear dependence on the Capillary number and did not agree with those predicted by highly idealized theory primarily because explicit and implicit assumptions in the theory were not relevant to practical conditions in this study.  相似文献   

9.
Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.  相似文献   

10.
Distributions of fluid temperature and its fluctuation are measured across a R-113 subcooled boiling flow channel with heat fluxes up to the CHF. A microthermocouple probe associated with an electric compensation circuit for the time constant is used for this purpose. Applying statistical treatments to the recorded temperature fluctuation, the heat transfer process in the flow and the characteristics of the bubbles flowing close to the heated surface are investigated. For high heat fluxes nearby the CHF, some bubbles adjacent to the heated surface show a clear trend to coalesce to large volume bubbles with relatively long passing periods, suggesting a mechanism of departure from nucleate boiling by periodical wall temperature rise due to momentary liquid film dryout underneath the large bubbles.  相似文献   

11.
Two-phase pressure drop measurements are very difficult to make while the fluid is in non-equilibrium condition, i.e. while phase change is taking place. This is further complicated when an atomized liquid is introduced in the system at much higher velocity than other components such as liquid layer, vapor core, and entrained droplets. The purpose of this paper is to develop a model to predict the two-phase pressure characteristics in a mesochannel under various heat flux and liquid atomization conditions. This model includes the momentum effects of liquid droplets from entrainment and atomization. To verify the model, an in-house experimental setup consisting of a series of converging mesochannels, an atomization facility and a heat source was developed. The two-phase pressure of boiling PF5050 was measured along the wall of a mesochannel. The one-dimensional model shows good agreement with the experimental data. The effects of channel wall angle, droplet velocity and spray mass fraction on two-phase pressure characteristics are predicted. Numerical results show that an optimal spray cooling unit can be designed by optimizing channel wall angle and droplet velocity.  相似文献   

12.
Past thermometry research for two-phase microfluidic systems made much progress regarding wall temperature distributions, yet the direct measurement of fluid temperature has received little attention. This paper uses a non-invasive two-dye/two-color fluorescent technique to capture fluid temperature along with local liquid fraction in a two-phase microflow generated by injecting air into a heated microchannel. The fluorescent emission of Rhodamine 110 and Rhodamine B, measured with photodiodes, is used to obtain local liquid temperature (±3°C) and void fraction (±2% full-scale) over a temperature range from 45 to 100°C. Arrays of these sensors can significantly expand the set of measurable flow parameters to include bubble/slug frequency, size, velocity, and growth rates in addition to mapping the local liquid temperature and void fraction.  相似文献   

13.
The thermocapillary convection which results from both a temperature field as well as residual contamination applied at the surface of a spherical liquid system in a microgravity environment has been studied both analytically and numerically. Such an investigation is relevant to containerless materials processing in a microgravity environment. The analysis is linear. Temperature and concentration fields are steady, but have a non-axisymmetric spatial variation. The compound fluid drop system as well as the simple drop system are studied. Results are compared to those of Marangoni flow, driven only by a thermal field.  相似文献   

14.
In the present study, a numerical model is developed for simulation of annular two-phase flow considering bubbly flow regime in the liquid film along with the four involved mechanisms of mass transfer those are evaporation, entrainment, deposition and condensation. In the numerical approach, liquid film accompanied by fine nucleated bubbles are simulated with innovative model named suction model, the whole domain containing liquid film and the vapor core is simulated by volume of fluid model. While the vapor and the entrained droplets are treated as homogeneous flow. The interface between the liquid and the vapor is traced by level set formulation. The model is then validated by experimental models of Lee & Lee and Stevanovic et al. and shows a good precision such that it predicts the experimental results of Stevanivic et al. Better than their own numerical model. This issue is due to the least possible simplifying assumptions along with considering the effect of boiling in liquid film and all mechanisms of mass transfer in the fluid flow.  相似文献   

15.
The velocity fields and the parameters of a finite-width liquid film moving along the bottom of a mini- and a microchannel under the action of a gas flow are calculated. The investigations are performed for different levels of gravity. It is found that the thin liquid film distorts the velocity field in the gaseous phase. In contrast to the minichannel flow, in the microchannel the film surface is not leveled with increase in the gravity force.  相似文献   

16.
蔡少斌  杨永飞  刘杰 《力学学报》2021,53(8):2225-2234
为了研究深层油气资源在岩石多孔介质内的运移过程, 使用一种基于Darcy-Brinkman-Biot的流固耦合数值方法, 结合传热模型, 完成了Duhamel-Neumann热弹性应力的计算, 实现了在孔隙模拟多孔介质内的考虑热流固耦合作用的两相流动过程. 模型通过求解Navier-Stokes方程完成对孔隙空间内多相流体的计算, 通过求解Darcy方程完成流体在岩石固体颗粒内的计算, 二者通过以动能方式耦合的形式, 计算出岩石固体颗粒质点的位移, 从而实现了流固耦合计算. 在此基础上, 加入传热模型考虑温度场对两相渗流过程的影响. 温度场通过以产生热弹性应力的形式作用于岩石固体颗粒, 总体上实现热流固耦合过程. 基于数值模型, 模拟油水两相流体在二维多孔介质模型内受热流固耦合作用的流动过程. 研究结果表明: 热应力与流固耦合作用产生的应力方向相反, 使得总应力比单独考虑流固耦合作用下的应力小; 温度的增加使得模型孔隙度增加, 但当注入温差达到150 K后, 孔隙度不再有明显增加; 温度的增加使得水相的相对渗流能力增加, 等渗点左移.   相似文献   

17.
An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.  相似文献   

18.
Surface temperature fluctuations that occur locally underneath departing bubbles in pool boiling are shown to result in local heat transfer coefficients ranging from 1 to 10 kW/cm2. These estimates were reported in the literature involved both numerical and experimental approaches. Significantly higher heat fluxes are associated with flow boiling than pool boiling under similar conditions of wall superheat and liquid subcooling (e.g. at boiling inception and at critical heat flux). These enhancements are primarily caused by the convective transport, acceleration/distortion of the bubble departure process as well as the resultant potential enhancement of the local surface temperature fluctuations.In this study we measure the surface temperature fluctuations using temperature micro/nano-sensors fabricated on a silicon wafer during flow boiling on the silicon wafer which is heated from below. The silicon wafer is clamped on a constant heat flux type calorimeter consisting of a vertical copper cylinder with embedded cartridge heaters and K-type thermocouples. Micro/nano-thermocouples (thin film thermocouples or “TFT”) are fabricated on the surface of the silicon wafer. High speed data acquisition apparatus is used to record temperature data from the TFT at 1 kHz. A fluorinert was used as the test fluid (PF-5060, manufacturer: 3M Co.). The calorimeter and surface temperature measurement apparatus is housed in a test section with glass walls for visual observation. The liquid is pumped from a constant temperature bath to maintain a fixed subcooling during the experiments under steady state conditions. The transient temperature data from the FFT array during flow boiling on the silicon wafer is analyzed using fast Fourier transform (FFT). The FFT data is analyzed as a function of the wall heat flux and wall superheat. The number of temperature peaks in the FFT data is observed to increase with increase in wall heat flux and the peaks are found to cover a wider spectrum with peaks at higher frequencies with enhancement of heat flux. The surface temperature fluctuations, especially at small length and time scales, are perturbed potentially by the coupled hydrodynamic and thermal transport processes, resulting in enhanced local and global heat flux values. Boiling incipience condition and the flow boiling data are compared with correlations reported in the literature.  相似文献   

19.
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.  相似文献   

20.
Plane problems on the distribution of a two-dimensional magnetic field in magnetohydrodynamic channels with ferromagnetic walls at appreciable magnetic Reynolds numbers and prescribed flow hydrodynamics are studied. An integral representation for the total magnetic induction is constructed with the use of a complex influence function describing the field resulting from a unit current. This makes it possible to obtain arbitrarily close approximations to exact solutions of the problems on a digital computer. Influence functions for various channels can be determined by mirror reflections and conformai mappings. The method is illustrated by numerical calculations of the distribution of the magnetic field for the flow of a conducting fluid along a plane ferromagnetic wall and the flow of a fluid in the space between ferromagnetic walls. Calculations are carried out on the effect of an external circuit and an inhomogeneous transverse velocity profile on the distribution of the magnetic field.Translated from Zhumal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 3–11, September–October, 1971.In conclusion the authors thank G. A. Lyubimov, A. B. Vatazhin, V. V. Gogosov, and A. E. Yakuberiko for useful discussion of the formulation of the problem and of results of the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号