首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We report simple synthesis of ternary Pt–Au–Cu catalysts consisting of active Pt-rich shell and Pt transition-metal alloy core for use as highly active and durable electrocatalysts in oxygen reduction reactions. The ternary Pt–Au–Cu catalysts were synthesized by chemical coreduction followed by thermal treatment and chemical dealloying. During synthesis, thermal treatment formed metal particles into high-degree alloys, and chemical dealloying led to selective dissolution of soluble Cu species from the outer surface layer of the thermally treated alloy particles, resulting in Pt-based alloys@Pt-rich surface core–shell configuration. Compared with a commercial Pt/C catalyst, our Pt1?xAu x Cu3/C-AT catalysts exhibited approximately 2.4-fold enhanced performance in oxygen reduction reactions. Among the catalysts employed in this work, Pt0.97Au0.3Cu3/C-AT showed the highest performance in terms of mass activity, specific activity, and electrochemically active surface area loss with negligible change during 10,000 potential cycles. The synthesis details, electrochemical characteristics, oxygen reduction reaction performance, and durability of the chemically dealloyed ternary Pt–Au–Cu catalysts are presented and discussed.  相似文献   

2.
Aligned carbon nanotubes (ACNTs) electrode has been developed for the direct protein electrochemistry and enzyme-biosensor study involving two types of nanoparticles. Pt nanoparticles (Ptnano) were electro-modified on the ACNTs’ each tube, greatly increasing the electrode surface area for locating protein and also its electronic transfer ability. Glucose oxidase (GOD) with chitosan (CS) and CdS nanoparticles electrochemically coated on each tube of ACNTs–Ptnano by the electrodeposition reaction of CS when pH value passing its pKa. The CdS nanoparticles between ACNTs electrode and GOD have stimulated the GOD’s direct electron transfer during its redox reaction of FAD/FADH2. The CS–GOD–CdS/ACNTs–Ptnano electrode also offer sensitive response to the substrate of glucose with detection limit of 46.8 μM (S/N = 3) and apparent Michaelis–Menten constant of 11.86 mM.  相似文献   

3.
High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2θ values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (∼2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for ∼150 mV to more negative values and with ∼2 times higher currents in comparison to Pt/C.  相似文献   

4.
Nanoscale Pt3Ni/functionalized multiwalled carbon nanotubes (FMWCNTs) catalysts, successfully synthesized by anchoring nickel–platinum alloy nanoparticles on FMWCNTs, are presented in this paper. Compared with conventional commercial Pt/C catalysts, the preliminary results revealed that the Pt3Ni/FMWCNTs catalysts demonstrated not only higher specific activity for oxygen reduction reaction (ORR) but also outstanding stability. The enhancement in the stability of the Pt3Ni/FMWCNTs catalysts is believed to be due to the anchor effects in Pt3Ni alloy structure, the stronger interaction between Pt3Ni alloy nanoparticles and FMWCNTs, and the “π sites” anchoring centers for metal nanoparticles from CNTs with high graphite.  相似文献   

5.
Alloy catalysts of Pt50Au50/CexC with various Ce additions (x) were prepared for the oxygen reduction reaction (ORR). The characterization of the alloy structures, surface species, and electro-catalytic activities of prepared alloy catalysts were performed by XRD, temperature-programmed reduction (TPR), and rotating disc electrode (RDE) technique, respectively. The ORR activity of Pt50Au50/C alloy catalyst with a promotion of 15% CeO2 was enhanced significantly in comparison to the commercial Pt/C catalyst within the mixed kinetic-diffusion control region. The addition of CeO2 decreased the particle sizes, increased the dispersion and enhanced the surface segregation of Pt which resulting in an alloy surface with a moderate oxophilicity on alloy catalysts.  相似文献   

6.
Polycrystalline platinum decorated by WO3 nanoparticles (WO3/Ptpc) is used as a model electrode to gain insights into the enhanced tolerance to carbon monoxide (CO) observed on such composite materials. Bifunctional-type reactions involving WO3 and Pt active sites are observed, such as hydrogen spill-over or the electrooxidation of CO molecules adsorbed on Pt sites neighboring the WO3 nanoparticles. The resulting COad-free Pt sites are active for the hydrogen oxidation reaction (HOR), thereby enhancing the HOR activity for WO3/Ptpc electrode relatively to bare Ptpc in 300 ppm CO/H2 saturated HClO4 electrolyte. However, this bifunctional effect occurs exclusively for CO molecules weakly adsorbed on Pt, i.e. only for a small fraction of the COad fully covering the Pt surface.  相似文献   

7.
Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potential range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.  相似文献   

8.
A simple and green approach to synthesize highly active electro-catalysts for methanol oxi- dation reaction (MOR) without using any organic agents is described. Pt nanoparticles are directly deposited on the pre-cleaned and pre-oxidized multiwall carbon nanotubes (MWC- NTs) from Pt salt by using CO as the reductant. MOR activity has been characterized by both cyclic voltammetry and chronoamperometry, the current density and mass specific current at the peak potential (ca. 0.9 V vs. RHE) reaches 11.6 mA/cm^2 and 860 mA/mgpt, respectively. After electro-deposition of Ru onto the Pt/MWCNTs surface, the catalysts show steady state mass specific current of 20 and 80 mA/mgpt at 0.5 and 0.6 V, respectively.  相似文献   

9.
The results of the study of microstructural parameters and the data on the electrochemically active surface area of Pt/C and Pt50M50/C (M = Ni, Cu, Ag) catalysts in 1 M H2SO4 solutions are compared. The metal-carbon nanomaterials were prepared by the method of chemical reduction of metals from the organoaqueous solutions of their compounds. The loading of metal component in them was 30–33 wt %. It is found that actual composition of metal component in the synthesized binary systems fits best the theoretically expected one (1: 1) for the PtAg/C catalyst whereas in the PtNi/C and PtCu/C systems, a considerable fraction of alloying component is present in the form of the corresponding oxides. A decrease in the average size of crystallites of metal component from 3.8 to 1.6 nm in the series of studied materials PtAg/C > Pt/C ≥ PtCu/C s> PtNi/C does not correspond to the character of the variation of electrochemically active surface area of the catalysts: PtNi/C ≈ PtCu/C < Pt/C ≪ PtAg/C increasing from 16–20 to 62–69 m2/g(Pt). The contradiction can be caused by the preferential segregation of platinum on the surface of nanoparticles of PtAg alloy, a higher degree of agglomeration of smaller nanoparticles, and, in the case of PtNi/C and PtCu/C materials, also by the insulation of a fraction of nanoparticle surface area by the corresponding oxides.  相似文献   

10.
Honeycomb-like porous carbons (PCs) were synthesized using a facile self-assembly method with phenolic resin as the carbon source and tetraethyl orthosilicate (TEOS) as the silica source. The PCs were found to have a large BET surface area of 458 m2 g?1 and a partially graphitized structure. The obtained PCs were used as a support for various Pt-Pd bimetallic alloy catalysts employed for methanol oxidation in alkaline media. Compared with Pt supported on commercial Vulcan XC-72R carbon (Pt/C) and with the other Pt-Pd bimetallic alloy catalysts on PCs, Pt3Pd1 on PCs displayed the most negative onset potential for methanol oxidation and the highest steady-state current (2.04 mA cm?2). This may be because the Pt3Pd1/PCs catalyst has the largest electrochemical active surface area (ESA), and because adding Pd to the catalyst improves the ability of the intermediate species to tolerate oxidation. The results show that the prepared Pt-Pd/PCs is a potential candidate for application as a catalyst in alkaline direct methanol fuel cells.  相似文献   

11.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   

12.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

13.
Platinum (Pt) nanoparticles were deposited at the surface of well-aligned multi-walled carbon nanotubes (MWNTs) by potential cycling between +0.50 and −0.70 V at a scanning rate of 50 mV · s−1 in 5 mM Na2PtCl6 solution containing 0.1 M NaCl. The electrocatalytic oxidation of methanol at the nanocomposites of Pt nanoparticles/nanotubes (Ptnano/MWNTs) has been investigated using 0.2 M H2SO4 as supporting electrolyte. The effects of various parameters, such as Pt loading, concentration of methanol, medium temperature as well as the stability of Ptnano/MWNTs electrode, have been studied. Compared to glassy carbon electrode, carbon nanotube electrode significantly enhances the catalytic efficiency of Pt nanoparticles for methanol oxidation. This improvement in performance is due not only to the high surface area and the fast electron transfer rate of nanotubes but also to the highly dispersed Pt nanoparticles as electrocatalysts at the tips and the sidewalls of nanotubes.  相似文献   

14.
Bimetallic catalysts have demonstrated properties favorable for upgrading biofuel through catalytic hydrodeoxygenation. However, the design and optimization of such bimetallic catalysts requires the ability to construct accurate, predictive models of these systems. To generate a model that predicts the kinetic behavior of benzene adsorbed on Pt (1 1 1) and a Pt3Sn (1 1 1) surface alloy (Pt3Sn (1 1 1)), the adsorption of benzene was studied for a wide range of benzene coverages on both surfaces using density functional theory (DFT) calculations. The adsorption energy of benzene was found to correlate linearly with benzene coverage on Pt (1 1 1) and Pt3Sn (1 1 1); both surfaces exhibited net repulsive lateral interactions. Through an analysis of the d-band properties of the metal surface, it was determined that the coverage dependence is a consequence of the electronic interactions between benzene and the surface. The linear coverage dependence of the adsorption energy allowed us to quantify the influence of the lateral interactions on the heat of adsorption and temperature programmed desorption (TPD) spectra using a mean-field model. A comparison of our simulated TPD to experiment showed that this mean-field model adequately reproduces the desorption behavior of benzene on Pt (1 1 1) and Pt3Sn (1 1 1). In particular, the TPD correctly exhibits a broadening desorption peak as the initial coverage of benzene increases on Pt (1 1 1) and a low temperature desorption peak on Pt3Sn (1 1 1). However, due to the sensitivity of the TPD peak temperature to the desorption energy, precise alignment of experimental and theoretical TPD spectra demands an accurate calculation of the adsorption energy. Therefore, an analysis of the effect of the exchange-correlation functional on TPD modeling is presented. Through this work, we show the necessity of incorporating lateral interactions into theoretical models in order to correctly predict experimental behavior.  相似文献   

15.
The structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by the electrochemical dispersion of metals under the action of pulse alternating current in a solution of NaOH were studied. Using X-ray diffraction analysis and scanning and transmission electron microscopy, it was found that the synthesized Pt/C catalysts contained active constituent particles with the average size D 111 = 10.6 nm with a predominantly cubic shape. Upon the dispersion of a Pt3Ni alloy, the Pt-Ni/C catalyst containing the particles of a stoichiometric metal phase of Pt3Ni (D 111 = 9.6 nm) and also Pt x Ni particles (x > 3) enriched in platinum (D 111 = 8.1 nm). The synthesized catalysts possessed high electrocatalytic activity and stability in the reaction of methanol oxidation. The characteristics of these catalysts as anodes in the membrane-electronic unit of a hydrogen-air solid-polymer fuel cell were studied.  相似文献   

16.
Novel titanium-supported nanoporous network bimetallic Pt–Ir/Ti electrocatalysts (S1:Pt59Ir41/Ti, S2:Pt44Ir56/Ti, S3:Pt22Ir78/Ti) have been successfully fabricated by the hydrothermal process. The nanoparticles of Pt and Ir were deposited on the titanium substrates in the presence of formaldehyde as a reduction agent. The electrocatalytic activity of these electrocatalysts towards formic acid oxidation in 0.5 M H2SO4 + 0.5 M HCOOH solutions was investigated using cyclic voltammograms (CVs), linear sweep voltammograms (LSVs), chrono amperometry and electrochemical impedance spectroscopy (EIS). The CVs of S1, S2 and S3 exhibit two anodic peaks in the forward scan and one anodic peak in the reverse scan which are similar to the pure Pt. Their LSVs show that the three samples present significantly high current densities of formic acid oxidation compared to the Pt electrode. It is observed from the chrono amperometric measurements at potential 600 mV that the sample S2 delivers a steady-state current density that is 545 times larger than that for the pure Pt electrode. EIS analysis shows that the impedances on both the imaginary and real axes of S1, S2 and S3 are much lower than those of the pure Pt. Among the three samples (S1, S2 and S3), S2 exhibits the highest electrocatalytic activity towards the formic acid oxidation.  相似文献   

17.
The formation of Pt/γ-Al2O3 and Pt/C catalysts from platinum carbonyl clusters H2[Pt3(CO)6]n (n = 2, 5) is studied. The strength of interaction between clusters (strong Lewis bases) and the support and the state of platinum in catalysts are governed by the acceptor strength of the support. The formation of a stable platinum compound with a surface of γ-Al2O3 (strong Lewis acid) is shown for a Pt/γ-Al2O3 catalyst by the method of radial distribution functions. In a Pt/C catalyst containing the same amount of Pt supported on a carbon material known to be a weaker acceptor, metallic platinum is formed along with surface-bonded platinum. Proceeding from the existence of the active phase of catalysts in the form of a surface platinum complex and platinum crystallites, the properties of catalysts are discussed in the complete oxidation of methane and the dehydrogenation of cyclohexane, as well as the high dispersity of platinum and its thermal stability  相似文献   

18.
Integration of different active sites into metallic catalysts, which may impart new properties and functionalities, is desirable yet challenging. Herein, a novel dealloying strategy is demonstrated to decorate nickel–aluminum layered double hydroxide (NiAl–LDH) onto a Pt–Ni alloy surface. The incorporation of chemical etching of Pt–Ni alloy and in situ precipitation of LDH are studied by joint experimental and theoretical efforts. The initial Ni‐rich Pt–Ni octahedra transform by interior erosion into Pt3Ni nanoframes with enlarged surface areas. Furthermore, owing to the basic active sites of the decorated LDH together with the metallic sites of Pt3Ni, the resulting Pt–Ni nanoframe/NiAl–LDH composites exhibit excellent catalytic activity and selectivity in the dehydrogenation of benzylamine and hydrogenation of furfural.  相似文献   

19.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

20.
Pt/CNTs催化剂的制备及其催化臭氧化活性研究   总被引:1,自引:0,他引:1  
刘正乾  马军 《化学学报》2007,65(24):2965-2970
以碳纳米管(CNTs)为催化剂载体, 以H2PtCl6•6H2O为贵金属活性组分前驱物, 采用等体积浸渍法制备了Pt/CNTs催化剂. 以草酸为目标污染物, 考察了所制备催化剂的催化活性, 并采用SEM, XRD和XPS等分析方法对催化剂进行表征. 对活性组分Pt的负载量、氢还原温度和热处理方式进行了研究, 确定了适宜的制备条件为Pt负载量1.0%、氢还原温度350 ℃. 研究表明, 在本实验条件下, 单独臭氧氧化、碳纳米管载体催化臭氧化和Pt/CNTs催化臭氧化分别能去除溶液中3.0%, 72.9%和97.9%的草酸. Pt的负载明显地提高碳纳米管催化臭氧化的效果. XRD分析显示催化剂的活性组分Pt以单质Pt0的形式存在; 与氢还原过程相比, 在空气气氛中焙烧制备的Pt/CNTs催化剂表面Pt的结晶度过高, 而且XPS结果表明此催化剂表面的Pt有化学吸附氧存在, 导致催化活性降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号