首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Four different phases and four different first-order phase transitions have been shown to exist in Gibbs adsorption layers of mixtures containing n-hexadecyl dihydrogen phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2. These conclusions have been made from surface pressure-time (pi-t) adsorption isotherms measured with a film balance and from monolayer morphology observed with a Brewster angle microscopy (BAM). The observed four phases are gas (G), liquid expanded (LE), liquid condensed (LC) and LC' phases. Three first-order phase transitions are G-LE, LE-LC and LC-LC'. However, the thermodynamically allowed G-LC phase transition in a 1.2 x 10(-4) M mixture at 2 degrees C, which is below the so-called triple point, is kinetically separated into the G-LE and LE-LC phase transitions. The most interesting observation is that the homogeneous LC phase shows a new first-order phase transition named as LC-LC' at 2 or 5 degrees C. The LE and LC phases represent circular and fractal shaped domains, respectively, whereas the LC' phase shows very bright, anisotropic and characteristic shaped domains.  相似文献   

2.
Phase diagram of Gibbs monolayers of mixtures containing n-hexadecyl phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2 has been constructed by measuring surface-pressure-time (pi-t) isotherms with film balance and by observing monolayer morphology with Brewster angle microscopy (BAM). This phase diagram shows a triple point for gas (G), liquid expanded (LE), and liquid condensed (LC) phases at around 6.7 degrees C. Above this triple point, a first-order G-LE phase transition occurring at 0 surface pressure is followed by another first-order LE-LC phase transition taking place at a certain higher surface pressure that depends upon temperature. The BAM observation supports these results. Below the triple point, the pi-t measurements show only one first-order phase transition that should be G-LC. All of these findings are in agreement with the general phase diagram of the spread monolayers. However, the BAM observation at a temperature below the triple point shows that the thermodynamically allowed G-LC phase transition is, in fact, a combination of the G-LE and LE-LC phase transitions. The latter two-phase transitions are separated by time and not by the surface pressure, indicating that the G-LC phase transition is kinetically separated into these two-phase transitions. The position of the LE phase below the triple point in the phase diagram is along the phase boundary between the G and LC phases.  相似文献   

3.
We present the adsorption kinetics and the surface phase behavior of water-soluble n-tetradecyl phosphate (n-TDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). The relaxation of the surface pressure at about zero value in the surface pressure (pi)-time (t) adsorption isotherm is found to occur from 2 to 20 degrees C with appropriate concentrations of the amphiphile. These plateaus are accompanied by two surface phases, confirming that the relaxation of the surface pressure is caused by a first-order phase transition. Only this phase transition is observed at <6.5 degrees C and it is considered as a gas (G)-liquid condensed (LC) phase transition. Above 6.5 degrees C, the phase transition at zero surface pressure is followed by another phase transition, which is indicated by the presence of cusp points in the pi-t curves at different temperatures. Each of the cusp points is followed by a plateau, which is accompanied by two surface phases, indicating that the latter transitions are also first-order in nature. At >6.5 degrees C, the former transition is classified as a first-order G-liquid expanded (LE) phase transition, while the latter transition is grouped into a first-order LE-LC phase transition. The critical surface pressure (pi(c)) necessary for the G-LC and G-LE phase transitions is zero and remains constant all over the studied temperatures, whereas that for the LE-LC transition increases linearly with increasing temperature. Based on these results, we construct a rather elaborated phase diagram that shows that the triple point for Gibbs monolayers of n-TDP is 6.5 degrees C. All the results are consistent with the present understanding of the Langmuir monolayers of insoluble amphiphiles at the air-water interface.  相似文献   

4.
The surface phase behavior of di-n-dodecyl hydrogen phosphate (DDP) in Langmuir monolayer and its interactions with L-arginine (L-arg) have been investigated by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM). The DDP monolayers on pure water show a first-order liquid expanded-liquid condensed (LE-LC) phase transition and form fingering LC domains having uniform brightness at different temperatures. At 15 degrees C, the pi-A isotherms on pure water and on different concentration solutions of L-arg show a limiting molecular area at approximately 0.50 nm(2)/molecule. With increasing the subphase concentration of L-arg up to 4.0 x 10(-4)M, the LE and the LE-LC coexistence regions shift to larger molecular areas and higher surface pressures, respectively. With a further increase in the concentration of L-arg beyond this critical concentration, these isotherms show little or no more expansion. These results have been explained by considering the fact that the L-arg undergoes complexation with the DDP to form L-arg-DDP that remains in equilibrium with the components at the air-water interface. As the concentration of L-arg in the subphase increases, the equilibrium shifts towards the complex. At a concentration of L-arg > or =4.0 x 10(-4)M, the DDP monolayers get saturated and show the characteristics of the new amphiphile, L-arg-DDP. BAM is applied to confirm the above results. When the concentration of the L-arg is <4.0 x 10(-4)M, domains always start forming at an area of approximately 0.64 nm(2)/molecule, which is the critical molecular area for the phase transition in the DDP monolayers on pure water. In contrast, when the monolayers are formed on a solution containing > or =4.0 x 10(-4)M L-arg, comparatively smaller size domains are formed after the appearance of a new cusp point at approximately 0.55 nm(2)/molecule. With an increase in the concentration of L-arg in the subphase, the size of the domains decreases indicating that the fraction of the DDP gradually decreases, whereas the fraction of the complex gradually increases. In addition, a very simple procedure for determination of the stability constant, which is 2.6 x 10(4)M(-1) at 15 degrees C, has been suggested.  相似文献   

5.
We present the adsorption kinetics and the surface phase behavior of n-hexadecyl dihydrogen phosphate (n-HDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). A phase diagram, which shows a triple point at about 25.8 degrees C, is constructed by measuring the surface pressure (pi)-time (t) adsorption isotherms. Below 25.8 degrees C, each of the pi-t curves shows a plateau at about zero surface pressure indicating the existence of a first-order phase transition. The BAM observation confirms the order of this phase transition by presenting two-surface phases during this plateau. However, the BAM observation also shows clearly another second-order phase transition from an isotropic phase to a mosaic-textured liquid condensed (LC) phase. The initial phase is a gas (G) phase. Considering the peculiarity of the middle phase, we suggest this phase as an intermediate (I) phase. Above the triple point, the pi-t curves predict the existence of two-step first-order phase transitions. Similar to the results at lower temperatures, the BAM images show two-surface phases during these first-order phase transitions together with a second-order phase transition from an isotropic phase to an LC phase. These transitions are classified as a first-order G-LE (liquid expanded) phase transition, which is followed by another first-order LE-I phase transition. The second-order phase transition is an I-LC phase transition. Contrary to these results, at 36 degrees C both the pi-t measurements and the BAM observation present only two first-order phase transitions, which are G-LE at zero surface pressure and LE-LC transition at higher surface pressure. The shape of the domains during the main transitions shows a peculiar change from a circular at 20 degrees C to an elongated at 24 degrees C and finally to a circular shape at 36 degrees C. Such a change in the domain shapes has been explained considering the dehydration effect at higher temperatures as well as the nature of phases.  相似文献   

6.
We present the adsorption kinetics and surface morphology of the adsorbed monolayers of bis(ethylene glycol) mono-n-tetradecyl ether (C14E2) by film balance and Brewster angle microscopy. A cusp point followed by a plateau region in the pressure (pi)-time (t) adsorption isotherm indicates a first-order phase transition in the coexistence region between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase. A variety of condensed phase domains surrounded by the homogeneous LE phase are observed just after the appearance of the phase transition. The domains are of a spiral or striplike structure at lower temperatures. This characteristic shape of the domains is because of strong dipole-dipole repulsion between the molecules. At 18 degrees C, the domains are found to be quadrant structures. A slight increase in subphase temperature (around 1 degrees C) brings about a quadrant-to-circular shape transition in the domains. The circular domains return to quadrant structures as the subphase temperature is lowered. The domains completely disappear when the temperature is increased beyond 19 degrees C, suggesting that the critical temperature for the condensed domain formation is 19 degrees C. Above this temperature, the hypothetical surface pressure necessary for the phase transition exceeds the actual surface pressure attainable from a solution of concentration greater than or equal to the critical micelle concentration. An increase in molecular motion with increasing temperature results in a higher degree of chain flexibility. As a result, the molecules cannot accumulate in the condensed phase form when the subphase temperature is above 19 degrees C.  相似文献   

7.
We have concurrently studied the surface pressure (pi) versus area (A) isotherms and microscopic surface morphological features of Langmuir monolayers of diethylene glycol mono-n-octadecyl ether (C18E2) by film balance and Brewster angle microscopy (BAM) over a wide range of temperature. At temperatures < or =10 degrees C, the monolayers exist in the form of condensed phase even just after the evaporation of the spreading solvent, suggesting that the melting point of the condensed phase is above this temperature. At > or =15 degrees C, the monolayers can exist as gas (G), liquid expanded (LE), and liquid condensed (LC) phases and undergo a pressure-induced first-order phase transition between LE and LC phases showing a sharp cusp point followed by a plateau region in the pi-A isotherms. A variety of 2-D structures, depending on the subphase temperature, are observed by BAM just after the appearance of the cusp point. It is interesting to note here that the domains attain increasingly large and compact shape as the subphase temperature increases and finally give faceted structures with sharp edges and corners at > or =30 degrees C. The BAM observations were coupled with polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to gain better understanding regarding the conformational order and subcell packing of the molecules. The constancy of the methylene stretching modes over the studied temperature range suggests that the hydrocarbon chains do not undergo any conformational changes upon compression of the monolayer. However, the full width at half-maximum (fwhm) values of the asymmetric methylene stretching mode (nu(as)(CH(2))) are found to respond differently with changes in temperature. It is concluded that even though the trans/gauche ratio of the hydrocarbon chains remains virtually constant, the LE-LC phase transition upon compression of the monolayer is accompanied by a loss of the rotational freedom of the molecules.  相似文献   

8.
A systematic analysis of pressure-area isotherms and grazing incidence X-ray diffraction (GIXD) data of 22-methoxydocosan-1-ol (H3C-O-(CH2)22-OH, MDO), docosan-1-ol (H3C-(CH2)21-OH, DO), and docosyl methyl ether (H3C-(CH2)21-O-CH3, DME) monolayers on pure water between 10 and 35 degrees C is presented. All monolayers form fully condensed phases in the investigated temperature region. The GIXD data reveal that the monolayers exhibit the phase sequence -S at lower temperature and -LS at higher temperature. Phase diagrams have been established. Inserting a second hydrophilic group at the opposite end of the molecule (bipolar MDO) shifts the S/LS boundary to higher temperatures. All monolayers exhibit herringbone (HB) packing at lower temperatures. The "kink" in the isotherms observed at lower temperatures is replaced by a very small plateau region at higher temperatures. The entropy changes connected with this weak first-order tilting transition are much smaller compared with the first-order transition from liquid-expanded (LE) to condensed (LC). Additionally, this transition is endothermic in contrast to the LE/LC transition. The reason for the endothermic transition is the weaker positional correlation in the nontilted state compared with the tilted one. The appearance of the weak first-order endothermic transition can be connected with the changed phase sequence. X-ray photoelectron spectroscopy (XPS) measurements provide information about the polar group orientation. Considerations based on GIXD and XPS data as well as adhesion energy of the different terminal end groups lead to the conclusion that the hydroxyl group of the bipolar MDO is attached to the water surface while the methoxy group is in contact with air. The presented results show that the second hydrophilic group influences the monolayer properties in a mild way.  相似文献   

9.
Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state.  相似文献   

10.
We study the surface phase behavior in Langmuir monolayers of a series of nonionic surfactants of the general formula CnE1 with n=14, 16, and 18 by film balance and Brewster angle microscopy (BAM) over a wide range of temperatures. A cusp point followed by a pronounced plateau region in the pressure-area (pi-A) isotherms indicates a first-order phase transition in the coexisting state between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase at the air-water interface. The formation of bright two-dimensional (2D) LC domains in a dark background visualized by BAM further confirms this observation. In addition to the cusp point at the onset of the LE-LC coexistence state, another cusp point followed by a small plateau is observed for the C14E1 and C18E1 monolayers, indicating a second phase transition between two condensed phases of different compressibility and tilt orientation of the molecules. This unusual two-step phase transition is explained by the Ostwald step rule. The C16E1 and C18E1 monolayers show a kink in their respective isotherms, after which the surface pressure increases steeply with only a little decrease in the molecular area, suggesting that the molecules undergo a transition from a tilted to an almost vertical orientation with respect to the water surface. The thermodynamic parameters for the condensation of the molecules in the LE-LC coexistence state were calculated by employing the 2D Clapeyron equation. The temperature coefficient of the critical surface pressure dpi(c)/dT values shows a decreasing trend from C14E1 to C18E1, suggesting that the condensation process becomes less and less prone to thermal perturbation as the chain length increases. For all the amphiphiles, the DeltaH values are found to be negative, suggesting an exothermic nature of condensation. The negative DeltaS values obtained from the relation DeltaH/T probably come from the restriction on the rotational and translational motion of the molecules constrained in a confined area in the LE-LC transition region.  相似文献   

11.
Surface pressure-area per monomer (pi-A) isotherms show that poly(L-lactic acid) (PLLA) Langmuir monolayers exhibit a liquid expanded-to-condensed (LE/LC) phase transition at low surface pressure. Brewster angle microscopy images show circular domains where the LC phase is surrounded by the LE phase during phase coexistence. Morphology studies via atomic force microscopy show that well-ordered patterns are only observed for Langmuir-Blodgett films prepared in the LC phase, while no ordered features are observed in the LE phase. The morphological differences confirm that during the LE/LC phase transition PLLA molecules form well-ordered structures at the air/water interface. Analysis by the two-dimensional Clausius-Clapeyron equation is used to predict the critical parameters (X(c)). Both critical parameters, the critical temperature (T(c)) and the critical pressure (pi(c)), increase with increasing number average molar mass (M(n)) as X(c) = X(c,infinity) - KM(n)(-1), where X(c,infinity) is the value of the critical parameter at infinite molar mass and K is a constant. For PLLA T(c,infinity) = 36.2 +/- 0.3 degrees C and pi(c,infinity) = 4.53 +/- 0.06 mN x m(-1). This study provides a model polymer system for examining critical behavior in two dimensions.  相似文献   

12.
The effect of temperature on the surface phase behavior of tetradecanoyl N-ethanolamide (NHEA-14) in Langmuir monolayers at the air-water interface has been investigated by film balance and Brewster angle microscopy (BAM). It has been observed that dendritic domains are formed in the coexistence region between liquid-expanded (LE) and liquid-condensed (LC) phases at different temperatures. At 10 and 15°C, the domains are four-armed dendrites having wide arms which have a tendency to be fractal while growing in size. At 20°C, five-armed dendritic domains are formed. At a temperature higher than 20°C, the domains are mainly six-armed dendrites having very narrow and sharp arms. The formation of dendritic domains should be due to the presence of interfacial hydrogen bonding among the head groups of the amphiphile. Increased dehydration of the head groups with an increase in the temperature should be responsible for the temperature dependency of the dendritic domain shapes in the monolayers of NHEA-14.  相似文献   

13.
We study the surface phase behavior in Langmuir monolayers of 1-O-hexadecyl-rac-glycerol (C16G) by film balance and Brewster angle microscopy over a wide range of temperatures. A cusp point followed by a pronounced plateau region in the pressure-area (pi-A) isotherm indicates a first-order phase transition between a lower density liquid expanded (LE) phase and a higher density liquid condensed (LC) phase at the air-water interface. A wide variety of condensed domains are found to form just after the appearance of the cusp point. The observed surface morphology was compared with that of ethylene glycol mono-n-hexadecyl ether (C16E1) that bears an ethylene oxide (EO) unit in the head-group. As usually observed, the domains of C16E1 are found to be circular at lower temperatures and fractal at higher temperatures. Contrary to this usual behavior, the domains of C16G are found to be strip-like structures at lower temperatures, which attain increasingly compact shape as the temperature increases and finally attain faceted structures at > or = 25 degrees C. It is concluded that a higher degree of dehydration around the head-group region of C16G appreciably reduces the hydration-induced repulsive interactions between the head-groups and imparts to the molecules an increase in hydrophobicity, thereby a closer molecular packing. As a result, the molecules form increasingly compact domains as the temperature increases. Since the head-group of C16E1 is much smaller than that of C16G, dehydration effect cannot appreciably increase its hydrophobic character. Rather, increases in subphase temperature result in a decrease in the line tension of the interface giving fractal structures at higher temperatures. In addition, the changes in enthalpy (deltaH) and entropy (deltaS) values were also calculated to understand the thermodynamic nature of condensation of the molecules in the LE-LC transition region.  相似文献   

14.
Thermodynamic and morphological properties of Langmuir monolayers of di-n-dodecyl hydrogen phosphate (DDP) have been studied by film balance and Brewster angle microscopy (BAM) over a wide range of temperature between 5 and 40 degrees C. From pi-A isotherms, a generalized phase diagram consisting of gas (G), liquid expanded (LE) and liquid condensed (LC) phases is constructed for the DDP monolayers. The BAM images show the formation of gas bubble in the bright background of LE phase during G-LE phase transitions and fingering LC domains during LE-LC phase transitions. The shapes of these domains are independent of temperature, showing a sharp contrast to the temperature-dependent monolayer morphologies of amphiphilic systems where the shape of the LC domains changes either from compact circular to fingering or from irregular or spiral to compact patterns with increasing temperature. In addition, the domains do not show any change in their shapes with decreasing the compression rate. Since the two-alkyl chains are directly attached by covalent bonds to the phosphate group, the rearrangement of the molecules needs to move the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes the fingering domains, which are independent of external variables. Although the domains are formed in a fingering shape, the equilibrium shape can be attained by about 120 min at 15 degrees C indicating a rather slow relaxation rate.  相似文献   

15.
The precipitation of calcium oxalate monohydrate (COM) at phospholipid monolayers confined to the air/water interface is observed in situ with the aid of Brewster angle microscopy. COM crystals appear as bright objects that are easily identified and quantified to assess the effects of different conditions on crystallization. Crystal precipitation was monitored at monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in liquid condensed (LC) and liquid expanded (LE) phases. Within the LC phase, higher pressures reduce the incidence of crystallization at the interface, implying that within this phase precipitation is enhanced by higher compressibility or fluidity of the monolayer. Precipitation at biphasic LC/LE and LE/gas (G) monolayers was also studied. COM appears preferentially at phase boundaries of the DPPC LC/LE and LE/G monolayers. However, when an LC/LE phase boundary is created by two different phospholipids that are phase segregated, such as DPPC and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, crystal formation occurs away from the interface within the DPPC LC phase. It is suggested that COM growth at phase boundaries is preferred only when there is molecular exchange between the phases.  相似文献   

16.
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.  相似文献   

17.
Surface phase behavior of di-n-tetradecyl hydrogen phosphate, DTP, has been studied by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM) at different temperatures. A generalized phase diagram, which shows a triple point for gas (G), liquid-expanded (LE) and liquid-condensed (LC) phases at about 32 degrees C, is constructed for the amphiphile. Below the triple point, a first-order G-LC phase transition has been shown to occur, whereas a first-order G-LE phase transition followed by another first-order LE-LC transition has been found to take place at a temperature above the triple point. The amphiphile shows the fingering LC domains with uniform brightness indicating the presence of untilted molecules. The domain shapes are independent of the change in temperature and compression rate. The existence of similar fingering domains over a wide range of temperature is rather uncommon in the monolayer systems and is considered to be due to the restricted movement of the molecules incorporating into the LC phase. Because the two-alkyl chains are directly attached to two covalent bonds of the phosphate head group, the rearrangement of the molecules, which is an essential condition for the circular domain formation, needs the movement of the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes fingering domains, which are independent of external variables.  相似文献   

18.
The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.  相似文献   

19.
The effect of temperature on the surface phase behavior in Langmuir monolayers of monomyristoyl-rac-glycerol (MMG) at the air-water interface has been studied by film balance and Brewster angle microscopy (BAM). It is observed that the domains of the MMG monolayers formed in the coexistence region between the liquid expanded (LE) and liquid condensed (LC) phases retain their circular shape over the studied temperature range, showing a sharp contrast to the temperature-dependent monolayer morphologies of amphiphilic systems where the shape of condensed domains changes either from compact circular to fingering or from irregular or spiral to compact patterns with increasing temperature. It is concluded that the system is capable of tuning the line tension of the interface by the effect of the increase in the hydrophobic character because of dehydration of the headgroup, which imparts to the molecules the properties of similar molecules but with less hydrophilic headgroups. As a result, the domains can retain their circular shape even up to the maximum possible temperature of the phase transition.  相似文献   

20.
Monopolar and bipolar derivatives of hexadecanoic acid (HA), 16-hydroxyhexadecanoic acid (HHA), methyl hexadecanoate (MH) and methyl 16-hydroxyhexadecanoate (MHH) have been investigated on pure water and NaCl solutions with different ion concentrations (1, 2 and 3 mol l−1). Surface pressure area isotherms show that HA forms a fully condensed monolayer on pure water at 20 °C [E. Teer, C.M. Knobler, S. Siegel, D. Vollhardt, G. Brezesinski, J. Phys. Chem., B104, 43, 2000, pp. 10053–10058] whereas in the case of the corresponding bipolar HHA the hydroxy group as a second polar moiety leads to a destabilization of the monolayer. The presence of two relatively strong hydrophilic polar groups at opposite ends of the chain prevents the formation of condensed films. The esterification of the carboxyl group (MH) changes the phase sequence from L2–Ov–LS for HA to L2–LS. Inserting a hydroxy group at the end of the chain (MHH) shifts the liquid expanded/liquid condensed (LE/LC) phase transition to higher surface pressures but does not change the phase sequence, however it increases the chain tilt. The pressure of the first-order phase transition LE/LC is strongly temperature dependent for MH, while the transition pressure of MHH is almost temperature independent. The phase behavior of MHH and MH on pure water was further studied by surface potential, Brewster angle microscopy (BAM), fluorescence microscopy and grazing incidence X-ray diffraction (GIXD) measurements. The LC domains of MHH on pure water are so small that no inner texture can be observed by BAM in contrast to the LC domains of MH. 3M NaCl in the subphase does not change the MH textures, while it increases the size of the LC domains of MHH. The influence of the hydroxy group on the monolayer behavior is discussed in terms of the formation of hydrogen bonds. The presence of NaCl in the subphase expands the monolayers. The results obtained are explained by changes in monolayer–monolayer and monolayer–subphase interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号