首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present atomistic theory of electronic and optical properties of a single InAs quantum dot grown on a pyramidal InP nanotemplate. The shape and size of the dot is assumed to follow the nanotemplate shape and size. The electron and valence hole single particle states are calculated using atomistic effective–bond–orbital model with second nearest-neighbor interactions. The electronic calculations are coupled to separately calculated strain distribution via Bir–Pikus Hamiltonian. The optical properties of InAs dots embedded in InP pyramids are calculated by solving the many-exciton Hamiltonian for interacting electron and hole complexes using the configuration–interaction method. The effect of quantum-dot geometry on the optical spectra is investigated by a comparison between dots of different shapes.  相似文献   

2.
Electronic transport through a one-dimensional quantum dot array is theoretically studied. In such a system both electron reservoirs of continuum states couple with the individual component quantum dots of the array arbitrarily. When there are some dangling quantum dots in the array outside the dot(s) contacting the leads, the electron tunneling through the quantum dot array is wholly forbidden if the electron energy is just equal to the molecular energy levels of the dangling quantum dots, which is called as antiresonance of electron tunneling. Accordingly, when the chemical potential of the reservoir electrons is aligned with the electron levels of all quantum dots, the linear conductance at zero temperature vanishes if there are odd number dangling quantum dots; Otherwise, it is equal to 2e2/h due to resonant tunneling if the total number of quantum dots in the array is odd. This odd–even parity is independent of the interdot and the lead–dot coupling strength.  相似文献   

3.
Three topics related to correlated electrons in coupled quantum dots are discussed. The first is quasi-resonance between multi-electron states, which causes hitherto unremarked types of resonant absorption in coupled quantum dots. The second is electron tunneling through a Hubbard gap, which is induced by an increase in the density of electrons in a quantum-dot chain under an overall confining potential. The third is Mott transition in a two-dimensional quantum-dot array induced by an external electric field. In this system, the metal-insulator transition goes through a heavy electron phase in which the density of correlated electrons fluctuates.  相似文献   

4.
We present a theoretical study of the charging spectra in natural and artificial atoms. We apply a model electrostatic potential created by a homogenously charged sphere. This model potential allows for a continuous passage from the Coulomb potential of the nucleus to parabolic confinement potential of quantum dots. We consider electron systems with N=1,…,10 electrons with the use of the Hartree–Fock method. We discuss the qualitative similarities and differences between the chemical potential spectrum of electron systems bound to nucleus and confined in quantum dots.  相似文献   

5.
We studied optical and electron transport properties of coupled InAs quantum dots (QDs) embedded in GaAs. Photoluminescence (PL) from the high dot density samples indicated asymmetry in the PL spectra when the ambient temperature is lower than about 50 K. Comparing this result with theoretical calculations, it is shown that this phenomenon is explained by the inter-dot electronic coupling effect. In the photo-conductance measurement, resonance peaks in the current–voltage characteristics were observed in the low-temperature region. The dependence of the resonance voltage on the magnetic field intensity was studied to extract the g-factor. It is also shown that the resonances are attributed to the current corresponding to the electron transport through QDs. According to these results, it is concluded that the inter-dot electronic coupling in the self-assembled InAs/GaAs QD systems occurs when the inter-dot spacing is as low as several nanometers and the ambient temperature is less than about 50 K.  相似文献   

6.
We present a novel self-assembled quantum dot structure designed to spatially separate and store photo-generated electrons and holes in pairs of strain coupled quantum dots. The spatial separation of electron–hole pairs into quantum dots and strain-induced quantum dots has been investigated and verified by photoluminescence experiments. Results from time-resolved PL demonstrates that at low temperatures (3 K) the electron–hole pair can be stored for several seconds.  相似文献   

7.
CdSe quantum dots (QDs) prepared using an aqueous sodium selenosulphite and N,N′-dimethylformamide (DMF) in commercial polymethylmethacrylate (PMMA) showed excellent optical properties. Tuning of the absorption and emission wavelengths by varying the selenium concentration with respect to cadmium is studied. As-prepared CdSe quantum dots showed absorption band at 405 nm (3.06 eV) associated with the formation of ‘early-stage’ CdSe nano-particles along with weak absorption at 480–90 nm due to continuous growth of the particles. The blue-green and yellow-green light emissions were observed from as-prepared solutions. Photoluminescence (PL) measurement showed band-edge emissions at around 430 nm for small clusters but a more stable emission at 544 nm for the 1:1 CdSe sample. X-ray diffraction (XRD) pattern of the CdSe/PMMA powder with Cd/Se ratio of 1:1 showed broad pattern for cubic CdSe. Transmission electron microscopy (TEM) showed cube like de-shaped spherical dots in the region of about 5 nm.  相似文献   

8.
Conduction-band electrons of semiconductor heterostructures described using the theory obey, for wide-bandgap semiconductors, the one-band effective-mass equation. We present, based on the one-band effective-mass equation, electron-state solutions for a quantum-dot heterostructure composed of two material layers (A and B) and identify localization properties of the groundstate. In particular, we show that the groundstate of two-material layer cylindrical quantum-dot systems can be localized in either material A or B depending on the dimensions of the nanostructure. A structure which is axially stacked (configuration ABA) has a certain critical radius below which the electron becomes localized in material A if the total axial length is big enough (A is assumed to be the material with the highest conduction-band edge). Similarly, a structure which is radially stacked (configuration BA) has a certain critical (axial) length below which the electron becomes localized in the high conduction-band edge material A if the radius is big enough. Although results are presented for cylindrical-shaped heterostructure semiconductors, similar localization inversion of the groundstate may occur in other geometries such as rectangular-shaped quantum-dot heterostructures.  相似文献   

9.
Optical and electrical characteristics of n–i–n InGaAs/GaAs quantum-dot (QD) infrared photodetectors are reported. In particular, the low-frequency excess electrical noise is measured at room temperature and analyzed in conjunction with the optical properties of the structure. The three stackings of QD were formed by atomic layer molecular-beam epitaxy and highly Si-doped, and AlGaAs current-blocking layer was also included to reduce the dark current. The power-dependent photoluminescence (PL) spectra at 300 K indicates that there are at least three confined states in the QD. The photo-current was observed only at low temperatures (10 K) at wavelengths between 3 and 9 μm with three peaks. The dark current was relatively large and asymmetric at low temperatures. At room temperature the dark current was symmetric and ohmic. The 1/f-like low-frequency noise spectral density exhibited an almost quadratic current dependence giving a large value of the Hooge parameter of the order of unity. The relatively low-growth temperature for the AlGaAs current blocking layer and the high doping at the quantum dots seem to generate a considerable amount of defects and result in low-temperature photodetection and a large low-frequency noise density.  相似文献   

10.
Hartree–Fock theory predicts a stripe-like ground state for the two-dimensional electron gas in a bilayer quantum Hall system in a quantizing magnetic field at filling factor 4N+1 (with N>0). This stripe state contains quasi-1D linear coherent regions where electrons are delocalized across both wells and which support low-energy collective excitations in the form of phonons and pseudospin waves. We have recently computed the dispersion relation of these low-energy modes in the generalized random phase approximation. In this work, we propose an effective pseudospin model in which the stripe state is modeled as an array of coupled 1D anisotropic XY systems. The coupling constants and stiffness of our model are extracted from the density and pseudospin response functions computed in the GRPA.  相似文献   

11.
We review far-infrared experiments on quantum wires and dots. In particular, we show that with tailored deviations from a parabolic external lateral confinement potential one can break Kohn’s theorem. This allows a detailed investigation of the internal relative motion in quantum dots and wires and the study of electron–electron interaction effects, for example, the formation of compressible and incompressible states in quantum dots and antidots.  相似文献   

12.
A model Hamiltonian is proposed for the localization–delocalization transition in quantum dots. By considering most relevant degrees of freedom, we obtain a finite dimensional Hilbert space. Through exact diagonalization, we find the ground state energies of the system as the number of electrons is varied. This explains the peculiar pattern of the electron addition energies, which are measured as a function of the top and side gate voltages.  相似文献   

13.
We report on the effect of the Debye averaging process on the CV characteristics of a sample containing four coupled planes of InAs self-assembled quantum dots. The observed electron distribution presented a dynamical dependence of the temperature during the CV measurements which was explained in terms of the screening length dependence on the temperature. In addition, using the CV data, we calculated the electron density at the planes containing the InAs dots and we have observed a high-temperature stability: the electron density at the quantum dots remained constant over a large range of temperature.  相似文献   

14.
Artificial molecules, namely laterally coupled quantum dots with a three-dimensional spherical confinement potential well of radius R and depth V 0, were studied by the unrestricted Hartree-Fock-Roothaan (UHFR) method. By varying the distance d between the centers of the two coupled quantum dots, the transition from the strong coupling situation to the weak one is realized. Hund's rule, suitable for a single quantum dot is destroyed in certain conditions in the artificial molecule. For example, in the few-electron system of the strongly coupled quantum-dot molecule, a transformation of spin configuration has been found. Received 8 March 2002 / Received in final form 29 May 2002 Published online 17 September 2002  相似文献   

15.
Current–voltage and low frequency excess electrical noise characteristics of two different—Schottky diode and n-i-n diode—GaAs structures embedded with self-assembled In(Ga)As quantum dots are reported. We find the growth of quantum dots induces defects not only near the quantum dot but also extended to quite a distance toward the growth direction. In Schottky diode structure, comparing with the reference sample without the quantum dot layer, the current dependence of the low frequency noise spectral density indicated that the noise is from the generated interface states with the density increasing towards the band tail. Also the crystal quality of the Schottky diode including the quantum dot layer, deduced from the Hooge parameter, was slightly worse than that of the reference sample. For n-i-n diode structure, the current–voltage relation was linear, and a quadratic current dependence of the noise spectral density was observed. The Hooge parameter for the n-i-n structure was determined to be on the order of unity indicating the general degradation of the structure.  相似文献   

16.
We investigate the electronic intraband absorption in quantum wells with a strong lateral random potential, realized for example by modulation doping with a thin spacer layer. In such systems, electrons become in-plane localized in isolated potential minima and behave like an inhomogeneous array of natural quantum dots. When excited with a coherent light field, the dots respond as individual oscillators, which are however coupled by dynamic dipole–dipole interactions. The absorption spectrum is then determined by the interplay of the single dot properties (related to the disorder potential) and the many-particle Coulomb interactions. Using a simple model for the single-particle states, we calculate the absorption spectrum as a function of the electron density. In the case of light polarized perpendicular to the layer, we find with increasing density a dramatic line narrowing (associated with a collective excitation of the electrons) and a depolarization blue shift. For in-plane polarized light, the peak is shifted to the red. Our theory also applies to far-infrared absorption experiments in artificial quantum dot arrays.  相似文献   

17.
In this article we review the physical characteristics of quantum cascade transitions (QCTs) in various nanoscopic systems. The quantum cascade laser which utilizes such transitions in quantum wells is a brilliant outcome of quantum engineering that has already demonstrated its usefulness in various real-world applications. After a brief introduction to the background of this transition process, we discuss the physics behind these transitions in an externally applied magnetic field. This has unravelled many intricate phenomena related to intersubband resonance and electron relaxation modes in these systems. We then discuss QCTs in a situation where the quantum wells in the active regions of a quantum cascade structure are replaced by quantum dots. The physics of quantum dots is a rapidly developing field with its roots in fundamental quantum mechanics, but at the same time, quantum dots have tremendous potential applications. We first present a brief review of those aspects of quantum dots that are likely to be reflected in a quantum-dot cascade structure. We then go on to demonstrate how the calculated emission peaks of a quantum-dot cascade structure with or without an external magnetic field are correlated with the properties of quantum dots, such as the choice of confinement potentials, shape, size and the low-lying energy spectra of the dots. Contents PAGE 1 Introduction 456 2 Intersubband transitions in quantum wells 458 3 Quantum cascade transitions 462 3.1. Basic principles 462 3.1.1. Minibands and minigaps 464 3.1.2. Vertical transitions 464 3.1.3. GaAs/AlGaAs quantum cascade lasers 464 3.1.4. QCLs based on superlattice structures 465 3.1.5. Type-II quantum cascade lasers 466 3.1.6. Recent developments 466 3.2. Applications: sense-ability and other qualities 466 4 Quantum cascade transitions in novel situations 467 4.1. External magnetic field 467 4.1.1. Parallel magnetic field 468 4.1.2. Many-body effects: depolarization shift 470 4.1.3. The role of disorder 471 4.1.4. Tilted magnetic field 475 4.2. Magneto-transport experiments and phonon relaxation 479 4.3. Magneto-optics experiment and phonon relaxation 484 5 A brief review of quantum dots 485 5.1. From three- to zero-dimensional systems 485 5.2. Making the dots 487 5.2.1. Lithographic patterning 487 5.2.2. Self-assembled quantum dots 488 5.3. Shell filling in quantum dots 489 5.4. Electron correlations: spin states 490 5.5. Anisotropic dots 491 5.6. Influence of an external magnetic field 491 5.6.1. The Fock diagram 491 5.6.2. The no-correlation theorem 492 5.6.3. Correlation effects and magic numbers 492 5.6.4. Spin transitions 493 5.7. Quantum dots in novel systems 494 5.8. Potential applications of quantum dots 494 5.8.1. Single-electron transistors (SETs) 494 5.8.2. Single-photon detectors 494 5.8.3. Single-photon emitters 495 5.8.4. Quantum-dot lasers 495 6 Quantum cascade transitions in quantum-dot structures 496 6.1. Quantum dots versus quantum wells 496 6.2. QCT with rectangular dots 497 6.2.1. Vertical transitions 500 6.2.2. Diagonal transitions 501 6.3. QCT in a parabolic dot 504 6.4. Magnetic field effects on intersubband transitions 506 6.5. Mid-IR luminescence from a QD cascade device 512 7 Summary and open questions 513 Acknowledgements 515 References 515  相似文献   

18.
We report inelastic light scattering measurements of spin excitations on coupled electron bilayers with relatively large tunneling gaps at total filling factor νT=1. We show that the pseudospin polarization order parameter, where the pseudospin labels the occupation of symmetric and antisymmetric levels, can be determined from the energy of long wavelength spin excitations. Our experiments indicate that the order parameter in the quantum Hall ground state collapses at the incompressible–compressible phase transition. The latter is driven by decreasing the tunneling gap through the application of an in-plane magnetic field.  相似文献   

19.
Direct and indirect excitons in coupled quantum wells and in coupled quantum dots are studied. We consider excitons with two-dimensional, quasi-two-dimensional and three-dimensional carriers. Problems were investigated for a wide range of characteristic parameters—confining to potential steepness, distances between quantum wells or dots, effective width of wells and magnetic fields. The mutual influence of the controlling parameters of the problem on exciton properties is analyzed. Energy and wave function spectra were calculated and dispersion law and effective masses were obtained.  相似文献   

20.
The generation of electron spin coherence has been studied in n-modulation-doped (In,Ga)As/GaAs self-assembled quantum dots (QDs) which contain on average a single electron per dot. The doping has been confirmed by pump–probe Faraday rotation experiments in a magnetic field parallel to the heterostructure growth direction. For studying spin coherence, the magnetic field was rotated by 90° to the Voigt geometry, and the precession of the electron spin about the field was monitored. The coherence is generated by resonant excitation of the QDs with circularly polarized laser pulses, creating a coherent superposition of an electron, and a trion state. The efficiency of the generation can be controlled by the pulse intensity, being most efficient for (2n+1)π pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号