首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported.  相似文献   

2.
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)32+ encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)32+ to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)32+ was grown through the St?ber method. Highly luminescent Ru(bpy)32+ serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)32+ is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)32+ co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.  相似文献   

3.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

4.
Xin Wang  Xiwen He  Langxing Chen 《Talanta》2009,78(2):327-3403
In this study, we synthesized Fe3O4 magnetic nanoparticles coated estrone-imprinted polymer with controlled size using a semi-covalent imprinting strategy. In this protocol, the estrone-silica monomer complex (EstSi) was synthesized by the reaction 3-(triethoxysilyl)propyl isocyanate with estrone, where the template was linked to the silica coating on the iron oxide core via a thermally reversible bond. The removal of the template by a simple thermal reaction produced specific estrone recognition sites on the surface of silica shell.The resulting estrone-imprinted polymer coating Fe3O4 magnetic hybrid nanoparticles exhibit a much higher specific recognition and saturation magnetization. The hybrid nanoparticles have been used for biochemical separation of estrone.  相似文献   

5.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

6.
首先利用高温分解法制备了粒径为18 nm的Fe3O4磁性纳米粒子, 并进行羧基化修饰, 然后与聚乙烯亚胺(PEI)化学修饰的氧化石墨烯进行交联反应, 得到磁功能化的氧化石墨烯(MGO)复合材料. 研究了氧化石墨烯片上的磁性纳米粒子的可控负载及其对复合材料磁性能的影响. 利用透射电子显微镜(TEM), 原子力显微镜(AFM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, 热重分析(TGA), 振荡样品磁强计(VSM)等手段对MGO复合材料的形貌, 结构和磁性能进行了表征. 结果表明, 我们发展的MGO复合材料的制备方法具有简单、可控的优点, 所制备的MGO复合材料具有较高的超顺磁性. 该类磁性氧化石墨烯复合材料有望在磁靶向药物、基因输运、磁共振造影以及磁介导的生物分离和去除环境污染物等领域获得广泛的应用.  相似文献   

7.
The reaction of formation of magnetic iron oxide nanoparticles from aqueous solutions of Fe(+2,+3) salts was studied under homo- and heterophase conditions of capillary-porous bodies by the nuclear magnetic resonance relaxometry method. Magnetic composites based on Bio-Glas porous glasses were obtained by precipitation of iron oxide nanoparticles in pores ranging in size from 50 to 250 nm. The magnetic relaxation rate of water protons during the heterophase precipitation reaction was examined.  相似文献   

8.
张海山  姬相玲 《高分子科学》2014,32(12):1639-1645
An easy method is presented to fabricate monodisperse magnetic macroporous polymer beads(MMPBs). Waterin-oil high internal phase emulsion(HIPE) is prepared by emulsifying aqueous iron ions solution in an oil phase containing monomers. The HIPE is introduced into a simple microfluidic device to fabricate monodisperse(water-in-oil)-in-water double emulsion droplets. The droplets serve as microreactors to synthesize Fe3O4 nanoparticles and are on-line polymerized to form MMPBs. The prepared MMPBs display uniform size, interconnected porous structure, superparamagnetic behavior and uniform distribution of Fe3O4 in polymer matrix. The MMPBs are characterized by scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometry(VSM). We believe that this method is a universal technique in preparing macroporous nanocomposite beads.  相似文献   

9.
Ionic liquids (ILs)-stabilized iron oxide (Fe(2)O(3)) nanoparticles were synthesized by the ultrasonic decomposition of iron carbonyl precursors in [EMIm][BF(4)] without any stabilizing or capping agents. The Fe(2)O(3) nanoparticles were isolated and characterized by X-ray powder diffraction, transmission electron microscopy and susceptibility measurements. The physicochemical properties of ILs containing magnetic Fe(2)O(3) nanoparticles (denoted as Fe(2)O(3)@[EMIm][BF(4)]), including surface properties, density, viscosity and stability, were investigated in detail and compared with that of [EMIm][BF(4)]. The Fe(2)O(3)@[EMIm][BF(4)] can be directly used as magnetic ionic liquid marble by coating with hydrophobic and unreactive polytetrafluoroethylene (PTFE), for which the effective surface tension was determined by the puddle height method. The resulting magnetic ionic liquid marble can be transported under external magnetic actuation, without detachment of magnetic particles from the marble surface that is usually observed in water marble.  相似文献   

10.
Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (St?ber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.  相似文献   

11.
采用聚苯乙烯(PS)包裹Fe3O4磁性纳米粒子,制得Fe3O4@PS复合微球,以此作为磁性载体,通过微球表面的羧基将聚酰胺-胺类树形大分子(PAMAM)连接到磁性载体上,然后使Ag纳米粒子镶嵌在树形分子层中,制得可再生的金属复合催化粒子Fe3O4@PS@PAMAM-Ag.并采用红外光谱、扫描电镜、电感耦合等离子体质谱(ICP-MS)和X射线光电子能谱等方法对复合催化粒子进行了表征,结果表明,树形分子可以较好地分散和稳定金属Ag纳米粒子,所制复合催化粒子表面Ag含量为1.64%,具有较高的催化还原对硝基苯酚的活性.同时,利用外加磁场可以方便快捷地从反应体系中分离出来,继续用于下一次反应中,复合催化粒子循环使用6次后,仍保持完全的催化性能.  相似文献   

12.
Monodisperse magnetic composite particles (MCP) were prepared and characterized for a study of magnetic field-responsive fluids. Magnetic composite particles used are iron oxide-coated polymer composite particles, which were synthesized through in situ coating of iron oxide onto pre-existing polymer particles by the reduction of ferrous fluids. For a uniform and bulk coating of iron oxide, the porous structure was introduced into the substrate polymer particles through a two-step seeded polymerization method. Moreover, surface cyano-functionality was born from acrylonitrile unit of substrate polymer and it played an important role in obtaining successful uniform coating. The structure of the composite particle was analyzed by using a thermo gravimetric analysis (TGA) and a X-ray diffraction (XRD) analysis. The magnetization property of the particle was also observed. Then, the rheological properties of monodisperse magnetorheological (MR) suspensions of magnetic composite particles were examined under a magnetic field using a parallel-plate type commercial rheometer. From the rheological measurements, it was found that MR properties of the magnetic composite suspensions are dependent on the iron oxide content and the fluid composition.  相似文献   

13.
Uniform Fe3O4 nanospheres with a diameter of 100 nm were rapidly prepared using a microwave solvothermal method. Then Fe304/polypyrrole (PPy) composite nanospheres with well-defined core/shell structures were obtained through chemical oxidative polymerization of pyrrole in the presence of Fe3O4; the average thickness of the coating shell was about 25 nm. Furthermore, by means of electrostatic interactions, plentiful gold nanoparticles with a diameter of 15 nm were assembled on the surface of Fe3O4/PPy to get Fe3O4/PPy/Au core/shell/shell structure. The morphology, structure, and composition of the products were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The resultant nanocomposites not only have the magnetism of Fe3O4 nanoparticles that make the nanocomposites easily controlled by an external magnetic field but also have the good conductivity and excellent electrochemical and catalytic properties of PPy and Au nanoparticles. Furthermore, the nanocomposites showed excellent electrocatalytic activities to biospecies such as ascorbic acid (AA).  相似文献   

14.
Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.  相似文献   

15.
Plasmonic Au and magnetic Fe are coupled into uniform Au@Fe core–shell nanoparticles (NPs) to confirm that electron transfer occurred from the Au core to the Fe shell. Au NPs synthesized in aqueous medium are used as seeds and coated with an Fe shell. The resulting Au@Fe NPs are characterized by using various analytical techniques. X‐ray photoelectron spectroscopy and superconducting quantum interference device measurements reveal that the Fe shell of the Au@Fe NPs mainly consists of paramagnetic Wüstite with a thin surface oxide layer consisting of maghemite or magnetite. Electron transfer from the Au core to the Fe shell effectively suppresses iron oxidation from Fe2+ to Fe3+ near the interface between the Au and the Fe. The charge‐transfer‐induced electronic modification technique enables us to control the degree of iron oxidation and the resulting magnetic properties.  相似文献   

16.
In this paper, using thiolated graphene oxide (GO‐O‐SH) as substrate, gold nanorods (AuNRs) covalently linked to the GO surface by in‐situ seed growth method were first reported. The as‐prepared composites were characterized by UV–vis spectrum, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT‐IR). Experimental results indicated that the introduction of short flexible organic chain between GO and AuNRs contributed to the homogenous synthesis of gold rods, and uniform gold nanorods with aspect ratio within 3~8 were covalently linked to the surface of GO with high stability and yield. The strategy represented an outstanding improvement in comparison to the traditional route for fabricating GO@AuNRs composites. Furthermore, based on coupling of the two nanomaterials, the composites could act as high sensitive Raman probe with limit of detection (LOD) reaching 1 × 10?12 M.  相似文献   

17.
Magnetic iron oxide nanoparticles have numerous applications in the biomedical field, some more mature, such as contrast agents in magnetic resonance imaging (MRI), and some emerging, such as heating agents in hyperthermia for cancer therapy. In all of these applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration, and add functionality. However, the coatings may interact with the surface atoms of the magnetic core and form a magnetically disordered layer, reducing the total amount of the magnetic phase, which is the key parameter in many applications. In the current study, amine and carboxyl functionalized and bare iron oxide nanoparticles, all suspended in water, were purchased and characterized. The presence of the coatings in commercial samples was verified with X-ray photoelectron spectroscopy (XPS). The class of iron oxide (magnetite) was verified via Raman spectroscopy and X-ray diffraction. In addition to these, in-house prepared iron oxide nanoparticles coated with oleic acid and suspended in heptane and hexane were also investigated. The saturation magnetization obtained from vibrating sample magnetometry (VSM) measurements was used to determine the effective concentration of magnetic phase in all samples. The Tiron chelation test was then utilized to check the real concentration of the iron oxide in the suspension. The difference between the concentration results from VSM and the Tiron test confirmed the reduction of magnetic phase of magnetic core in the presence of coatings and different suspension media. For the biocompatible coatings, the largest reduction was experienced by amine particles, where the ratio of the effective weight of magnetic phase reported to the real weight was 0.5. Carboxyl-coated samples experienced smaller reduction with a ratio of 0.64. Uncoated sample also exhibits a reduction with a ratio of 0.6. Oleic acid covered samples show a solvent-depended reduction with a ratio of 0.5 in heptane and 0.4 in hexane. The corresponding effective thickness of the nonmagnetic layer between magnetic core and surface coating was calculated by fitting experimentally measured magnetization to the modified Langevin equation.  相似文献   

18.
We report the fabrication and characterization of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) and their application to the dual imaging of cancer in vivo. Unlike dextran-coated cross-linked iron oxide nanoparticles, which are prepared by a chemical cross-linking method, TCL-SPION are prepared by a simple, thermal cross-linking method using a Si-OH-containing copolymer. The copolymer, poly(3-(trimethoxysilyl)propyl methacrylate-r-PEG methyl ether methacrylate-r-N-acryloxysuccinimide), was synthesized by radical polymerization and used as a coating material for as-synthesized magnetite (Fe3O4) SPION. The polymer-coated SPION was further heated at 80 degrees C to induce cross-linking between the -Si(OH)3 groups in the polymer chains, which finally generated TCL-SPION bearing a carboxyl group as a surface functional group. The particle size, surface charge, presence of polymer-coating layers, and the extent of thermal cross-linking were characterized and confirmed by various measurements, including dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carboxyl TCL-SPION was converted to amine-modified TCL-SPION and then finally to Cy5.5 dye-conjugated TCL-SPION for use in dual (magnetic resonance/optical) in vivo cancer imaging. When the Cy5.5 TCL-SPION was administered to Lewis lung carcinoma tumor allograft mice by intravenous injection, the tumor was unambiguously detected in T2-weighted magnetic resonance images as a 68% signal drop as well as in optical fluorescence images within 4 h, indicating a high level of accumulation of the nanomagnets within the tumor site. In addition, ex vivo fluorescence images of the harvested tumor and other major organs further confirmed the highest accumulation of the Cy5.5 TCL-SPION within the tumor. It is noteworthy that, despite the fact that TCL-SPION does not bear any targeting ligands on its surface, it was highly effective for tumor detection in vivo by dual imaging.  相似文献   

19.
We have developed a facile method for preparing magnetic nanoparticles which couple strongly with a liquid crystal (LC) matrix, with the aim of preparing ferronematic liquid crystal colloids for use in magneto-optical devices. Magnetite nanoparticles were prepared by oxidising colloidal Fe(OH)(2) with air in aqueous media, and were then subject to alkaline hydrothermal treatment with 10moldm(-3) NaOH at 100°C, transforming them into a polydisperse set of domain magnetite nanorods with maximal length ~500nm and typical diameter ~20nm. The nanorods were coated with 4-n-octyloxybiphenyl-4-carboxylic acid (OBPh) and suspended in nematic liquid crystal E7. As compared to the conventional oleic acid coating, this coating stabilizes LC-magnetic nanorod suspensions. The suspension acts as a ferronematic system, using the colloidal particles as intermediaries to amplify magnetic field-LC director interactions. The effective Frederiks magnetic threshold field of the magnetite nanorod-liquid crystal composite is reduced by 20% as compared to the undoped liquid crystal. In contrast with some previous work in this field, the magneto-optical effects are reproducible on time scales of months. Prospects for magnetically switched liquid crystal devices using these materials are good, but a method is required to synthesize single magnetic domain nanorods.  相似文献   

20.
Magnetic iron(II, III) oxide (magnetite, Fe(3)O(4)) nanoparticles were used to selectively enrich phosphopeptides from tryptic digests of bovine beta-casein and from tryptic digest mixtures containing bovine beta-casein, cytochrome c, bovine serum albumin, and horse heart myoglobin. The magnetic property of the particles permits an easy and speedy enrichment process. No enrichment of phosphopeptides was observed from ferric magnetic iron(III) oxide (Fe(2)O(3)) nanoparticles. These data collectively demonstrate that the enrichment of phosphopeptides using magnetic iron(II, III) oxide nanoparticles is a practical method for the selective analysis of phosphopeptides and could be helpful in isolating and analyzing phosphorylated peptides from complex biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号