首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Stochastic integer programs are notoriously difficult. Very few properties are known and solution algorithms are very scarce. In this paper, we introduce the class of stochastic programs with simple integer recourse, a natural extension of the simple recourse case extensively studied in stochastic continuous programs.Analytical as well as computational properties of the expected recourse function of simple integer recourse problems are studied. This includes sharp bounds on this function and the study of the convex hull. Finally, a finite termination algorithm is obtained that solves two classes of stochastic simple integer recourse problems.Supported by the National Operations Research Network in the Netherlands (LNMB).  相似文献   

4.
We consider the objective function of a simple integer recourse problem with fixed technology matrix.Using properties of the expected value function, we prove a relation between the convex hull of this function and the expected value function of a continuous simple recourse program.We present an algorithm to compute the convex hull of the expected value function in case of discrete right-hand side random variables. Allowing for restrictions on the first stage decision variables, this result is then extended to the convex hull of the objective function.Supported by the National Operations Research Network in the Netherlands (LNMB).  相似文献   

5.
陈志平  徐成贤 《应用数学》1996,9(3):266-271
利用对偶理论,本文给出了求解一类具有简单补偿的非线性二阶段问题的新对偶梯度法.在假设目标函数为可分连续可微凸函数的条件下,在每一选代步可将原二阶段有补偿问题转化为几个一维凸规划问题,大大简化了问题的求解.所给算法简单易行,文中还证明了该算法的全局收敛性.  相似文献   

6.
Solving two-stage stochastic programming problems with level decomposition   总被引:1,自引:0,他引:1  
We propose a new variant of the two-stage recourse model. It can be used e.g., in managing resources in whose supply random interruptions may occur. Oil and natural gas are examples for such resources. Constraints in the resulting stochastic programming problems can be regarded as generalizations of integrated chance constraints. For the solution of such problems, we propose a new decomposition method that integrates a bundle-type convex programming method with the classic distribution approximation schemes. Feasibility and optimality issues are taken into consideration simultaneously, since we use a convex programming method suited for constrained optimization. This approach can also be applied to traditional two-stage problems whose recourse functions can be extended to the whole space in a computationally efficient way. Network recourse problems are an example for such problems. We report encouraging test results with the new method.   相似文献   

7.
We consider a multiperiod stochastic programming recourse model for stock portfolio optimization. The presence of various risk and policy constraints leads to significant period-by-period linkage in the model. Furthermore, the dimensionality of the model is large due to many securities under consideration. We propose exploiting block separable recourse structure as well as methods of inducing such structure within nested L-shaped decomposition. We test the model and solution methodology with a base consisting of the Standard & Poor 100 stocks and experiment with several variants of the block separable technique. These are then compared to the standard nested period-by-period decomposition algorithm. It turns out that for financial optimization models of the kind that are discussed in this paper, significant computational efficiencies can be gained with the proposed methodology.  相似文献   

8.
本文利用凸规划的近似分解方法,给出了求解具有简单补偿随机规划问题的一种异步并行算法.  相似文献   

9.
In formulating stochastic programming with recourse models, the parameters of the linear programs are usually assumed to be random variables with known distributions. In this paper, the requirement vector parameter is assumed to be a stochastic process { i (t),tT,i=1,...,m}. The properties of the deterministic equivalents for the cases of the discrete and continuous index setT are derived. The results of the paper are applied to a multi-item production planning model with continuous (periodic) review of the stock on hand of various items.  相似文献   

10.
We consider mixed-integer recourse (MIR) models with a single recourse constraint. We relate the second-stage value function of such problems to the expected simple integer recourse (SIR) shortage function. This allows to construct convex approximations for MIR problems by the same approach used for SIR models.  相似文献   

11.
In this paper, we study how the two classical location models, the simple plant location problem and thep-median problem, are transformed in a two-stage stochastic program with recourse when uncertainty on demands, variable production and transportation costs, and selling prices is introduced. We also discuss the relation between the stochastic version of the SPLP and the stochastic version of thep-median.  相似文献   

12.
Quantitative stability in stochastic programming   总被引:1,自引:0,他引:1  
In this paper we study stability of optimal solutions of stochastic programming problems with fixed recourse. An upper bound for the rate of convergence is given in terms of the objective functions of the associated deterministic problems. As an example it is shown how it can be applied to derivation of the Law of Iterated Logarithm for the optimal solutions. It is also shown that in the case of simple recourse this upper bound implies upper Lipschitz continuity of the optimal solutions with respect to the Kolmogorov—Smirnov distance between the corresponding cumulative probability distribution functions.  相似文献   

13.
We derive formulas for constants of strong convexity (CSCs) of expectation functions encountered in two-stage stochastic programs with linear recourse. One of them yields a CSC as the optimal value of a certain quadratically constrained quadratic program, another one in terms of the thickness of the feasibility polytope of the dual problem associated to the recourse problem. CSCs appear in Hoelder-type estimates relating the distance of optimal solution sets of stochastic programs to a suitable distance of underlying probability distributions.  相似文献   

14.
The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two-stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DR-SIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed-integer second-order conic program.  相似文献   

15.
Most of the applied models written with an algebraic modeling language involve simultaneously several dimensions such as materials, location, time or uncertainty. The information about dimensions available in the algebraic formulation is usually sufficient to retrieve different block structures from mathematical programs. These structured problems can then be solved by adequate solution techniques. To illustrate this idea we focus on stochastic programming problems with recourse. Taking into account both time and uncertainty dimensions of these problems, we are able to retrieve different customized structures in their constraint matrices. We applied the Structure Exploiting Tool to retrieve the structure from models built with the GAMS modeling language. The underlying mathematical programs are solved with the decomposition algorithm that applies interior point methods. The optimization algorithm is run in a sequential and in a parallel computing environment.  相似文献   

16.
17.
This paper summarizes the main results on approximate nonlinear programming algorithms investigated by the author. These algorithms are obtained by combining approximation and nonlinear programming algorithms. They are designed for programs in which the evaluation of the objective functions is very difficult so that only their approximate values can be obtained. Therefore, these algorithms are particularly suitable for stochastic programming problems with recourse.Project supported by the National Natural Science Foundation of China.  相似文献   

18.
Separable sublinear functions are used to provide upper bounds on the recourse function of a stochastic program. The resulting problem's objective involves the inf-convolution of convex functions. A dual of this problem is formulated to obtain an implementable procedure to calculate the bound. Function evaluations for the resulting convex program only require a small number of single integrations in contrast with previous upper bounds that require a number of function evaluations that grows exponentially in the number of random variables. The sublinear bound can often be used when other suggested upper bounds are intractable. Computational results indicate that the sublinear approximation provides good, efficient bounds on the stochastic program objective value.This research has been partially supported by the National Science Foundation. The first author's work was also supported in part by Office of Naval Research Grant N00014-86-K-0628 and by the National Research Council under a Research Associateship at the Naval Postgraduate School, Monterey, California.  相似文献   

19.
Stability analysis for stochastic programs   总被引:4,自引:0,他引:4  
For stochastic programs with recourse and with (several joint) probabilistic constraints, respectively, we derive quantitative continuity properties of the relevant expectation functionals and constraint set mappings. This leads to qualitative and quantitative stability results for optimal values and optimal solutions with respect to perturbations of the underlying probability distributions. Earlier stability results for stochastic programs with recourse and for those with probabilistic constraints are refined and extended, respectively. Emphasis is placed on equipping sets of probability measures with metrics that one can handle in specific situations. To illustrate the general stability results we present possible consequences when estimating the original probability measure via empirical ones.  相似文献   

20.
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the expected integer recourse function, we prove that under mild conditions an optimal solution is contained in a finite set. Furthermore, we present a basic scheme to enumerate this set and suggest improvements to reduce the number of function evaluations needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号