首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonlinear calculations to within the second order of smallness with respect to the initial deformation of a liquid drop show that a stream of an ideal incompressible dielectric liquid streamlining the charged ideally conducting drop causes interaction between modes both in the first and second orders of smallness. Both the linear and nonlinear interactions of the oscillation modes result in the excitation of modes absent in the spectrum of the initial drop deformation. The relative motion of the drop and the medium leads to broadening of the spectrum of modes excited in the second order of smallness. The presence of the flow streamlining the drop and the intermode interaction result in decreasing the critical magnitudes of the drop charge and the velocity and density of the medium determining drop instability development.  相似文献   

2.
Nonlinear asymptotic calculations of the second order of smallness in the amplitude of the initial deformation of an ideally conducting liquid drop show that the laminar flow of an ideal conducting incompressible dielectric liquid flowing about the drop in an external electrostatic field parallel to the flow causes oscillation mode’s interaction in the first and second orders of smallness. Both linear and nonlinear interactions between the oscillation modes of the drop excite modes that are absent in the spectrum of modes governing the initial deformation of the drop’s equilibrium shape. In the second order of smallness, the mode interaction decreases the electrostatic field strength, as well as the velocity and density of the environment, that are critical for development of instability of the drop against the polarization charge.  相似文献   

3.
It is shown that, as the velocity of the flow around a charged drop of viscous liquid increases the drop charge value critical for the occurrence of drop instability rapidly decreases. It is found that, for some domains of values of the charge, the ratio of densities of the media, and the ambient velocity, the even and odd modes of the drop capillary oscillations pairwise couple with each other, which represents drop vibrational instability against the tangential discontinuity of the velocity field at the drop surface. At medium velocities larger than those associated with such domains, the instability growth rates for odd modes exceed the increments of even modes with smaller orders, which corresponds to the parachute-like deformation of the drop in the flow.  相似文献   

4.
Mechanisms behind the oscillations of a charged spheroidal drop deformed at the zero time and the sequence of oscillation modes are investigated. It is shown that two modes adjacent to those governing the initial deformation are also excited on either side due to interaction between the spheroidal deformation and oscillation modes. If the charge of the drop is so close to a value critical for electrostatic instability that the finite-amplitude virtual initial deformation makes the fundamental mode unstable, its amplitude, as well as the amplitude of the nearest neighbor coupled to the fundamental mode through deformation, starts to exponentially grow with time. If the charge is equal to, or slightly exceeds the critical value, the amplitudes of the fundamental mode and all modes deformation-coupled with it lose stability almost simultaneously. This qualitatively changes the conditions under which the charged drop becomes unstable against the self-charge. The superposition of higher oscillation modes at the vertices of the spheroidal drop generates dynamic (i.e., time-oscillating) hillocks emitting an excessive charge.  相似文献   

5.
A solution to the problem of nonlinear surface vibration of a charged ideal liquid drop is found in a third-order approximation in initial multimode deformation of the equilibrium spherical shape by the method of many scales. It is shown that the spectrum of modes that are responsible for the shape of the drop at an arbitrary time instant depends considerably on the spectrum of modes governing the initial deformation of the drop. The latter spectrum also has an effect on nonlinear corrections to the vibration frequencies and, consequently, on a nonlinear correction to the critical Rayleigh parameter, which specifies the stability of the drop against self-charge.  相似文献   

6.
The onset of abrupt magnetic reconnection events, observed in the nonlinear evolution of double tearing modes (DTM), is investigated via reduced resistive magnetohydrodynamic simulations. We have identified the critical threshold for the parameters characterizing the linear DTM stability leading to the bifurcation to the explosive dynamics. A new type of secondary instability is discovered that is excited once the magnetic islands on each rational surface reach a critical structure characterized here by the width and the angle rating their triangularization. This new instability is an island structure-driven nonlinear instability, identified as the trigger of the subsequent nonlinear dynamics which couples flow and flux perturbations. This instability only weakly depends on resistivity.  相似文献   

7.
An interaction between capillary oscillations of a charged drop and an external acoustic field is investigated under conditions in which nonlinear components of the acoustic pressure on the drop surface may be neglected. It is shown that equations describing the temporal evolution of modes of the capillary waves in this case may be either the Mathieu-Hill equations or ordinary inhomogeneous equations of the second order describing forced oscillations. In both cases, the drop instability (of a parametric or resonance type) may result in its disintegration due to deformation caused by the acoustic field at its own drop charge, subcritical in the sense of the Rayleigh criterion.  相似文献   

8.
It is shown that the pressure of electrostatic fields induced by the self-charge of a drop and by the polarization charge and aerodynamic pressure of a laminar gas flow around a moving charged drop acting simultaneously reduce the critical instability conditions for the surface of the drop. For these conditions, the spectrum of capillary oscillations of the drop is calculated. It is found that, at various values of the charge, field strength, and velocity of the drop, the vibrational instability of the drop surface develops through the interaction of different oscillation modes, namely, second and third, second and fourth, and third and fifth.  相似文献   

9.
The generatrix of a nonlinearly vibrating charged drop of a viscous incompressible conducting liquid is found by directly expanding the equilibrium spherical shape of the drop in the amplitude of initial multimode deformation up to second-order terms. A fact previously unknown in the theory of nonlinear interaction is discovered: the energy of an initially excited vibration mode of a low-viscosity liquid drop is gradually (within several vibrations periods) transferred to the mode excited by only nonlinear interaction. Irrespectively of the form of the initial deformation, an unstable viscous drop bearing a charge slightly exceeding the critical Rayleigh value takes the shape of a prolate spheroid because of viscous damping of all the modes (except for the fundamental one) for a characteristic time depending on the damping rates of the initially excited modes and the further evolution of the drop is governed by the fundamental mode. In a high-viscosity drop, the rate of rise of the unstable fundamental mode amplitude does not increase continuously with time, contrary to the predictions of nonlinear analysis in terms of the ideal liquid model: it first decreases to a value slightly differing from zero (which depends on the extent of supercriticality of the charge and viscosity of the liquid), remains small for a while (the unstable mode amplitude remains virtually time-independent), and then starts growing.  相似文献   

10.
The problem of nonlinear vibrations of a charged drop of an ideal incompressible conducting fluid in an electrostatic suspension is analytically solved in an approximation quadratic in two small parameters: vibration amplitude and equilibrium deformation of the shape of the drop in an electrostatic field. To solve the problem analytically, the desired quantities are expanded in semiinteger powers of the small parameters. It is shown that the charge of the drop and the gravitational field influence the shape of the drop, nonlinear corrections to the vibration frequencies, and critical conditions for instability of the drop against the surface charge. At near-critical values of the charge, the shape of the nonlinearly vibrating drop falls far short of being a sphere or a spheroid, which should be taken into account in treating experimental data.  相似文献   

11.
The spectrum of capillary oscillations of a charged oblate spheroidal drop is calculated in neglect of the interaction between modes by means of a perturbation expansion in the small deviation of the equilibrium shape of the drop from spherical. The critical conditions for instability of its nth mode with respect to the self-charge are calculated in the form of an analytical function describing how the dimensionless Rayleigh parameter characterizing the stability of the drop depends on the value of the spheroidal deformation. Zh. Tekh. Fiz. 69, 10–14 (July 1999)  相似文献   

12.
Analytical calculations show that, as a field in which an initially spherical charged conducting incompressible drop is placed becomes more and more nonuniform, coupling between the drop’s oscillation modes grows and the threshold of stability against the electrical field pressure declines. When an electrostatic parameter characterizing the electric field pressure exceeds a value that is critical for a certain mode to be unstable, the amplitude of this mode exponentially grows in an aperiodic manner and the amplitudes of modes coupled with this mode build up in an oscillatory manner, each mode having its own instability growth rate. In all cases, there exists a threshold value of the dimensionless electric parameter above which all oscillation modes are unstable.  相似文献   

13.
An analytic expression in the third order of smallness in the amplitude of the initial deformation of an equilibrium, spherical, charged, ideally conducting drop in an incompressible dielectric medium is derived for its generatrix and for nonlinear corrections to oscillation frequencies. It is shown that the presence of the ambient liquid reduces the absolute values of the corrections to frequency and of the self-charge critical for the realization of drop instability.  相似文献   

14.
Analytical calculation in the first order of smallness shows that the equilibrium shape of a drop in the field of a point charge is axisymmetric about the plane passing through the center of mass of the drop normally to the axis connecting the center of mass with the point charge. Whether the equilibrium shape of the drop is stable or not depends on the value of the field parameter, which, in turn, depends on the point charge and the distance to it. There is an asymptotic value of the critical parameter above which all modes become unstable. In the field of the point charge, the mode coupling grows; that is, a mode excited at the zero time generates oscillations of the six nearest modes with amplitudes proportional to that of the initially excited mode. If the initially excited mode loses stability, all the modes coupled with it also become unstable. The surface instability of the drop also develops when the initially excited mode is stable but at least one of the modes coupled with it is unstable.  相似文献   

15.
Analytical expressions are derived for the shape generatrix of an ideally conducting drop immersed in an incompressible dielectric medium as well as for nonlinear corrections to the frequencies of the oscillations of the drop. The solutions are obtained in an approximation of the third order of smallness with respect to the amplitude of the initial deformation of the equilibrium spherical shape of the drop. It is shown that the presence of the ambient liquid results in a reduction of the absolute magnitudes of corrections both to the oscillation frequencies and the self-charge critical for the development of instability of the drop.  相似文献   

16.
An analytic expression for the electric-field strength in the vicinity of a charged drop of an electrically conducting liquid is obtained for the case where the initial shape of the drop executing nonlinear vibrations is specified by a virtual excitation of an arbitrary single mode of capillary vibrations. It turns out that, even at small charges (such that the Rayleigh parameter for the drop is equal to one-tenth of the critical value associated with stability against the intrinsic charge), the electric-field strength at the drop surface in the case of an initial excitation of one of high modes is sufficient for the ignition of a corona discharge.  相似文献   

17.
A nonlinear integral equation describing the evolution of spheroidal deformation of a drop that is unstable with respect to its intrinsic charge is derived and solved for arbitrary values of viscosity. It was shown that, due to an essentially nonlinear character of the phenomenon, the characteristic time of instability develop-ment equals the time of tenfold increase in the amplitude of an initial, physically infinitesimal spheroidal deformation of an unstable drop. The dependence of the instability characteristic time on the drop viscosity is described by an increasing linear function.  相似文献   

18.
The critical conditions of instability of a hemispherical drop of a conducting liquid lying on a hard, electrically conducting substrate in an electric field parallel to the symmetry axis of the drop are found. These critical instability conditions are found to be higher than those of an insulating drop of the same size. Zh. Tekh. Fiz. 68, 9–12 (September 1998)  相似文献   

19.
Coupled backward and forward wave amplitudes of an electromagnetic field propagating in a periodic and nonlinear medium at Bragg resonance are governed by the nonlinear coupled mode equations (NLCME). This system of PDEs, similar in structure to the Dirac equations, has gap soliton solutions that travel at any speed between 0 and the speed of light. A recently considered strategy for spatial trapping or capture of gap optical soliton light pulses is based on the appropriate design of localized defects in the periodic structure. Localized defects in the periodic structure give rise to defect modes, which persist as nonlinear defect modes as the amplitude is increased. Soliton trapping is the transfer of incoming soliton energy to nonlinear defect modes. To serve as targets for such energy transfer, nonlinear defect modes must be stable. We therefore investigate the stability of nonlinear defect modes. Resonance among discrete localized modes and radiation modes plays a role in the mechanism for stability and instability, in a manner analogous to the nonlinear Schrödinger/Gross-Pitaevskii (NLS/GP) equation. However, the nature of instabilities and how energy is exchanged among modes is considerably more complicated than for NLS/GP due, in part, to a continuous spectrum of radiation modes which is unbounded above and below. In this paper we (a) establish the instability of branches of nonlinear defect states which, for vanishing amplitude, have a linearization with eigenvalues embedded within the continuous spectrum, (b) numerically compute, using Evans function, the linearized spectrum of nonlinear defect states of an interesting multiparameter family of defects, and (c) perform direct time-dependent numerical simulations in which we observe the exchange of energy among discrete and continuum modes.  相似文献   

20.
The nonlinear vibrations of the equilibrium spherical shape of a charged drop placed in a perfect incompressible dielectric medium are asymptotically calculated in the second-order approximation in single-mode initial deformation of the drop surface. The drop is assumed to be a perfect incompressible liquid. It is shown that the nonlinear vibration amplitudes, as well as the energy distribution between nonlinearly excited modes, depend significantly on the parameter ρ, where ρ is the ratio of the environmental density to that of the drop. It is also demonstrated that an increase in ρ raises the amplitude of the highest of the vibration modes excited due to second-order nonlinear interaction. In the second order of smallness, the amplitude of the zeroth mode is independent of the density ratio. As ρ grows, the effect of the self-charge of the drop, the interfacial tension, and the permittivity of the environment on the nonlinear oscillations increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号