首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodicity in a Nonlinear Predator-prey System with State Dependent Delays   总被引:1,自引:0,他引:1  
With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear state dependent delays predator-prey system where a_i(t),c_j(t),d_i(t) are continuous positive periodic functions with periodic ω>0, b_1(t),b_2(t) are continuous periodic functions with periodic ωand ∫_0~ωbi(t)dt>0. T_i,σ_j, p_i (i=1,2,…,n, j=1, 2,…,m) are continuous and ω-periodic with respect to their first arguments, respectively, α_i, β_j,γ_i(i=1,2,…,n, j=1,2, …, m) are positive constants.  相似文献   

2.
Let , be a family of compatible couples of Lp-spaces. We show that, given a countably incomplete ultrafilter in , the ultraproduct of interpolation spaces defined by the real method is isomorphic to the direct sum of an interpolation space of type , an intermediate K?the space between and being a purely atomic measure space, and a K?the function space K3) defined on some purely non atomic measure space (Ω3, ν3) in such a way that Ω2 ∪ Ω3 ≠∅. The research of first and third authors is partially supported by the MEC and FEDER project MTM2004-02262 and AVCIT group 03/050.  相似文献   

3.
For integers a, b and n > 0, define
and
where denotes the summation over all r such that (r, n) = 1, and is defined by the equation . The two sums are analogous to the homogeneous Dedekind sum S(a,b, n). The functional equations for A Γ and B Γ are established. Furthermore, Knopp's identity on Dedekind sum is extended. *This work is supported by the N.S.F. (10271093, 60472068) of P.R. China.  相似文献   

4.
In this paper, we prove that the weak solutions u∈Wloc^1, p (Ω) (1 〈p〈∞) of the following equation with vanishing mean oscillation coefficients A(x): -div[(A(x)△↓u·△↓u)p-2/2 A(x)△↓u+│F(x)│^p-2 F(x)]=B(x, u, △↓u), belong to Wloc^1, q (Ω)(A↓q∈(p, ∞), provided F ∈ Lloc^q(Ω) and B(x, u, h) satisfies proper growth conditions where Ω ∪→R^N(N≥2) is a bounded open set, A(x)=(A^ij(x)) N×N is a symmetric matrix function.  相似文献   

5.
Let D be an increasing sequence of positive integers, and consider the divisor functions: d(n, D) =∑d|n,d∈D,d≤√n1, d2(n,D)=∑[d,δ]|n,d,δ∈D,[d,δ]≤√n1, where [d,δ]=1.c.m.(d,δ). A probabilistic argument is introduced to evaluate the series ∑n=1^∞and(n,D) and ∑n=1^∞and2(n,D).  相似文献   

6.
Let Θ = (θ 1,θ 2,θ 3) ∈ ℝ3. Suppose that 1, θ 1, θ 2, θ 3 are linearly independent over ℤ. For Diophantine exponents
$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}$\begin{gathered} \alpha (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\sup }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\}, \hfill \\ \beta (\Theta ) = sup\left\{ {\gamma > 0: \mathop {\lim }\limits_{t \to } \mathop {\inf }\limits_{ + \infty } t^\gamma \psi _\Theta (t) < + \infty } \right\} \hfill \\ \end{gathered}  相似文献   

7.
Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a 0 + a 1 x + ... + a k x k is a k-degree polynomial with integral coefficients such that (p, a 0, a 1, ..., a k ) = 1, for any integer m, we study the asymptotic property of
$ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } , $ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } ,   相似文献   

8.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

9.
The trigonometric polynomials of Fejér and Young are defined by $S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}}$S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}} and $C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}$C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}, respectively. We prove that the inequality $\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}}$\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}} holds for all n ≥ 2 and x ∈ (0, π). The lower bound is sharp.  相似文献   

10.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

11.
Let U(λ, μ) denote the class of all normalized analytic functions f in the unit disk |z| < 1 satisfying the condition
$ \frac{{f(z)}} {z} \ne 0and\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1. $ \frac{{f(z)}} {z} \ne 0and\left| {f'(z)\left( {\frac{z} {{f(z)}}} \right)^{\mu + 1} - 1} \right| < \lambda ,\left| z \right| < 1.   相似文献   

12.
Suppose that X is a complex Banach space with the norm ‖·‖ and n is a positive integer with dim Xn ⩾ 2. In this paper, we consider the generalized Roper-Suffridge extension operator $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) on the domain $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } defined by
$ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = {*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = \begin{array}{*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ \end{array}   相似文献   

13.
We establish the existence of fundamental solutions for the anisotropic porous medium equation, ut = ∑n i=1(u^mi)xixi in R^n × (O,∞), where m1,m2,..., and mn, are positive constants satisfying min1≤i≤n{mi}≤ 1, ∑i^n=1 mi 〉 n - 2, and max1≤i≤n{mi} ≤1/n(2 + ∑i^n=1 mi).  相似文献   

14.
In this paper, we obtain positive solution to the following multi-point singular boundary value problem with p-Laplacian operator,{( φp(u'))'+q(t)f(t,u,u')=0,0〈t〈1,u(0)=∑i=1^nαiu(ξi),u'(1)=∑i=1^nβiu'(ξi),whereφp(s)=|s|^p-2s,p≥2;ξi∈(0,1)(i=1,2,…,n),0≤αi,βi〈1(i=1,2,…n),0≤∑i=1^nαi,∑i=1^nβi〈1,and q(t) may be singular at t=0,1,f(t,u,u')may be singular at u'=0  相似文献   

15.
  We obtain a new sharp inequality for the local norms of functions x ∈ L ∞, ∞ r (R), namely,
where φ r is the perfect Euler spline, on the segment [a, b] of monotonicity of x for q ≥ 1 and for arbitrary q > 0 in the case where r = 2 or r = 3. As a corollary, we prove the well-known Ligun inequality for periodic functions x ∈ L r , namely,
for q ∈ [0, 1) in the case where r = 2 or r = 3. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 10, pp. 1338–1349, October, 2008.  相似文献   

16.
In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n (z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and
$ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered}   相似文献   

17.
This paper is concerned with the divergence points with fast growth orders of the partial quotients in continued fractions. Let S be a nonempty interval. We are interested in the size of the set of divergence points
$ E_\varphi (S) = \left\{ {x \in [0,1):{\rm A}\left( {\frac{1} {{\varphi (n)}}\sum\limits_{k = 1}^n {\log a_k (x)} } \right)_{n = 1}^\infty = S} \right\}, $ E_\varphi (S) = \left\{ {x \in [0,1):{\rm A}\left( {\frac{1} {{\varphi (n)}}\sum\limits_{k = 1}^n {\log a_k (x)} } \right)_{n = 1}^\infty = S} \right\},   相似文献   

18.
Let μ be a measure with compact support, with orthonormal polynomials {p n } and associated reproducing kernels {K n }. We show that bulk universality holds in measure in {ξ: μ′(ξ) > 0}. More precisely, given ɛ, r > 0, the linear Lebesgue measure of the set {ξ: μ′(ξ) > 0} and for which
$\mathop {\sup }\limits_{\left| u \right|,\left| v \right| \leqslant r} \left| {\frac{{K_n (\xi + u/\tilde K_n (\xi ,\xi ),\xi + v/\tilde K_n (\xi ,\xi ))}} {{K_n (\xi ,\xi )}}} \right. - \left. {\frac{{\sin \pi (u - v)}} {{\pi (u - v)}}} \right| \geqslant \varepsilon$\mathop {\sup }\limits_{\left| u \right|,\left| v \right| \leqslant r} \left| {\frac{{K_n (\xi + u/\tilde K_n (\xi ,\xi ),\xi + v/\tilde K_n (\xi ,\xi ))}} {{K_n (\xi ,\xi )}}} \right. - \left. {\frac{{\sin \pi (u - v)}} {{\pi (u - v)}}} \right| \geqslant \varepsilon  相似文献   

19.
Abstract  Let Ω be the unit ball centered at the origin in . We study the following problem
By a constructive argument, we prove that for any k = 1, 2, • • •, if ε is small enough, then the above problem has positive a solution uε concentrating at k distinct points which tending to the boundary of Ω as ε goes to 0+.  相似文献   

20.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号