首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canister methodology is applicable to 150 polar and nonpolar VOCs found in ambient air from parts-per-billion by volume (ppbv) to parts-per-million (ppmv) levels, and has been validated at parts-per-trillion (pptv) levels for a subset of these analytes. This article is a detailed review of techniques related to the collection of volatile organic compounds (VOCs) in evacuated Summa and fused-silica-lined canisters, and their analysis by gas chromatography/mass spectrometry (GC/MS). Emphasis is placed on canister cleaning, VOC stability in canisters, sample dilution, water management, and VOC cryogenic and sorbent preconcentration methods. A wide range of VOC preconcentration and water management methods are identified from the literature, and their relative merits and disadvantages are discussed. Examples of difficulties that commonly arise when processing canister samples are illustrated, and solutions to these problems are provided.  相似文献   

2.
Recently, ozone concentrations have increased dramatically as a result of vehicle usage in metropolitan areas. Ozone precursors are composed of hydrocarbons of organic compounds. Because hydrocarbons are indicative of ozone formation, they need to be monitored in ambient air. Since ozone precursor are present at very low levels (from ppb to ppt) in ambient air, they are difficult to analyze accurately. This study investigates ozone precursors in ambient air. The main purpose of this study is to compare analytical methods for the measurement of ozone precursors in atmosphere. Two measurement methods were evaluated using canister (Silco-canister) and adsorbent (300-mg Carbopack B+150-mg Carbosieve SIII) tube. Differences in measurements for total ozone precursor emissions were 54.1% between the adsorption tube and canister-GC/MS, 51.1% between adsorption tube and canister-GC/FID, and 16.3% between canister-GC/MS and canister-GC/FID.  相似文献   

3.
冯丽丽  胡晓芳  于晓娟  张文英 《色谱》2016,34(2):209-214
采用热脱附(TD)结合气相色谱-三重四极杆串联质谱(GC-MS/MS)建立了环境空气中23种挥发性有机物(VOCs)同时检测的分析方法。空气样品通过主动采样的方式富集到装有Tenax-TA填料的热脱附管中,热解吸后在选择反应监测(SRM)模式下用GC-MS/MS进行检测,内标法定量。结果表明,23种VOCs在0.01~1 ng和1~100 ng低、高两个范围内线性关系良好,相关系数(r2)均大于0.99,方法定量限为0.00008~1 μ g/m3。加标水平为2、10和50 ng时,23种VOCs的平均回收率为77%~124%。除了最低加标水平的氯苯,相对标准偏差(RSD, n=6)均小于20%。对市内3个采样点的环境空气进行测定,其中苯、甲苯、乙苯、二甲苯、苯乙烯、1,2,4-三甲基苯和六氯丁二烯均有检出。实验证明,该TD和GC-MS/MS相结合的检测方法具有准确、可靠、灵敏度高等优点,适用于环境空气中VOCs的同时测定。  相似文献   

4.
Water vapor can be a significant interference in the analysis of air for non-methane volatile organic compounds (NMVOCs) using solid-adsorbent sampling techniques. The adsorbent materials used in sampling cartridges have different hydrophobic characteristics, and it is therefore necessary to characterize solid-adsorbent cartridges over a wide range of humidity. Controlled humidity experiments were performed to assess the extent of water vapor interference when samples are collected onto AirToxics solid-adsorbent cartridges. It was found that elevating the temperature of the cartridge to 10 degrees C above the temperature of the air sample greatly reduced water vapor adsorption and interferences and resulted in > or = 90% recovery of NMVOCs, biogenic VOCs and chlorofluorocarbons. Similar collection efficiencies were obtained at ambient temperature by reducing the relative humidity to > or = 60% in the sample by dilution with dry, scrubbed ambient air. A procedure also was developed and optimized for dry-purging cartridges prior to analysis. However, under optimized conditions, significant losses of C3-C5 compounds still occurred under highly humid conditions. It was determined that these losses were due to reduced retention during sampling rather than loss during the dry purge procedure. The dry purge method was shown to be adequate at high humidities for sampling NMVOCs with retention indices greater than 500.  相似文献   

5.
朱晓平  马慧莲  朱秀华  陈吉平 《色谱》2019,37(11):1228-1234
采用热脱附-气相色谱-质谱法,建立了同时分析环境空气中67种挥发性有机物的分析方法。对比了5种不同填充材料不锈钢吸附管对78种挥发性有机物的吸附能力。填充材料为Tenax TA和Carbograph 1TD的混合填料吸附管对分析物的捕集效果最好,在30 mL/min高纯He气持续吹脱45 min的情况下,未发生穿透(即穿透率小于10%)的化合物达67种,分析物的种类包括芳香烃、脂肪烃、卤代烃和含氧挥发性有机物等。优化了使用该吸附管测定67种目标物时的热脱附条件。在5~100 ng范围内,目标化合物的色谱响应值与其量间具有良好的线性关系,其相关系数(r)均在1.0000~0.9977之间。方法检出限为0.3~2.4 ng,以采样体积1 L计算,检出限为0.3~2.4 μg/m3。加标量为20 ng时,7次重复实验目标化合物回收率均在81.6%~114.9%之间,目标化合物的相对标准偏差为1.2%~10.1%。采用该方法对某车厢内空气进行了检测,检出了包括酯类、卤代烷烃、卤代烯烃以及芳香族化合物在内的19种目标化合物,其范围为1.1~84.1 μg/m3。该方法准确、可靠、灵敏度高,实现了对环境空气中67种目标污染物的准确定量。  相似文献   

6.
Speciated volatile organic compounds (VOC), either as ozone precursors or air toxics in the air, are commonly monitored by triggered canister method or continuous ozone precursor analyzer (commonly known as Auto-gas chromatography (GC)) method. In the triggered canister method, a canister sample is collected when a total non-methane organic compound (TNMOC) concentration exceeds a pre-determined trigger level. The canister sample is then analyzed in a lab in a later time. In the Auto-GC method, an online GC runs in a “continuous” mode with a sampling and analysis cycle of 1 h. Within the cycle hour, samples are collected only during the first 40 min.A new approach of Auto-GC running in trigger mode is developed in this study. This new approach uses Auto-GC but operates it in a trigger mode similar to the triggered canister sampling method. Compared to the triggered canister sample method, this system provides near real-time speciated VOC data, which are critical for responding to a high VOC concentration episode. Although the canister system generally costs less, its cost advantage may diminish if trigger events are frequent and the monitoring duration is long. Compared to continuous Auto-GC, triggered GC has its niche—it is better for capturing transient plumes with a small footprint. The continuous GC either misses a transient plume if the plume does not arrive at the sampling site during the sampling cycle or flattens the plume concentration peak by dilution with non-plume air sample.Field experience with this system for fenceline VOC monitoring is presented. The sampling and calibration strategy for trigger mode operation is described. The chromatograph retention time drift issues are discussed. The system performance is evaluated, including the method detection limit, precision and accuracy. The trigger mode configuration for VOC fenceline or near source monitoring in this work proved effective for local and transient plume identification.  相似文献   

7.
This article reviews developments in the sampling and analysis of volatile organic compounds (VOCs) in ambient air since the 1970s, particularly in the field of environmental monitoring. Global monitoring of biogenic and anthropogenic VOC emissions is briefly described. Approaches used for environmental monitoring of VOCs and industrial hygiene VOC exposure assessments are compared. The historical development of the sampling and analytical methods used is discussed, and the relative advantages and disadvantages of sorbent and canister methods are identified. Overall, there is considerable variability in the reliability of VOC estimates and inventories. In general, canister methods provide superior precision and accuracy and are particulary useful for the analysis of complex mixtures of VOCs. Details of canister methods are reviewed in a companion paper. C. C. Austin is an Invited Scientist of the National Research Council of Canada.  相似文献   

8.
A fast method was developed for the extraction and analysis of volatile organic compounds, including disinfection by-products (DBPs), with headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) techniques. A GC/time-of-flight (TOF)-MS instrument, which had fast acquisition rates and powerful deconvolution software, was used. Under optimum conditions total runtime was 45s. Volatile organic compounds (VOCs), including purgeable A and B compounds (listed in US Environmental Protection Agency method 624), were identified in standard water samples. Extraction times were 1min for more volatile compounds and 2min for less volatile compounds. The method was applied to the analysis of water samples treated under different disinfection processes and the results were compared with those from a liquid-liquid extraction method.  相似文献   

9.
新型单壁碳纳米管采样吸附剂性能的评价   总被引:3,自引:0,他引:3  
研究了单壁碳纳米管(SWCNTs)作为新型采样吸附剂的性能和效果,并应用于空气中挥发性有机化合物的分析测定。结果表明,单壁碳纳米管具有较大的比表面积,与经典Tenax TA吸附剂相比,对低碳数挥发性强的有机化合物回收率高,有更强的吸附能力;空白实验表明,SWCNTs易获得较低本底,具有化学惰性和疏水特性,采样时水的干扰小。当湿度增加时在误差允许的范围内准确度不受影响;实验测定具有较大的穿透容量和安全采样体积。将单壁碳纳米管吸附剂实际应用于大气中挥发性有机化合物的测定,通过与经典吸附剂Tenax TA相比,更适于采集大气中的挥发性有机化合物。  相似文献   

10.
Sin DW  Wong YC  Sham WC  Wang D 《The Analyst》2001,126(3):310-321
A technique using Summa canisters with cryogenic preconcentration and gas chromatographic-mass spectrometric (GC-MS) detection was developed to determine 143 C3-C12 volatile organic compounds (VOCs) including alkanes, alkenes, aromatics and halohydrocarbons in ambient and indoor air. The method detection limits and practical quantification limits were sensitive at 0.02 and 0.10 ppbv, respectively, and the method precision and accuracy were also satisfactory. The stability of C3-C12 VOC standards at ppbv levels under elevated pressure in canisters was assessed over various time intervals (from 1 week to 4 months after preparation) and most of the compounds were found to be acceptably stable with a mean recovery of 85.6 +/- 9.9% during the course of a 4-month study. However, a small fraction (approximately 6%) of the compounds, including two halohydrocarbons (bromotrichloromethane and benzyl chloride) and six alkenes (2-methylbuta-1,3-diene (isoprene), cis-4-methylpent-2-ene, cis-3-methylpent-2-ene, hept-1-ene, oct-1-ene and styrene) displayed relatively low recoveries in the range 34.6-67.9%. The loss of these compounds is most probably caused by their physical adherence to the active sites of the canister surface, chemical decomposition and/or reactions with other species. The results indicated that one must be cautious in attempting to measure these compounds owing to their instability in canisters. Overall, this analytical technique, which has been used for the determination of the VOCs under study in the toxic air pollutant monitoring network administered by the HKSAR Government, was amenable to the measurement of airborne VOCs collected both outside and inside a semi-confined car park in the present study.  相似文献   

11.
An home-made EFA (Evanescent Field Absorbance)-sensor has been tested for the determination of hydrocarbons in water. The investigations have been performed both with crude oil emulsions and petrol solutions. Cuvette and evanescent wave spectra of crude oil and petrol in the near-infrared region are presented and discussed. The concentration of aromatic compounds in crude oil can be determined semiquantitatively by the standard addition method. The sorption behaviour of the hydrocarbons in the cladding of the fiberoptic sensor has been investigated and a correlation between the sensor signal and the concentration of the aqueous hydrocarbon emulsion/solution could be shown. The desorption of the enriched molecules after the measurements is also presented. The petrol molecules evaporate in ambient air so that the sensor is easily regenerated. In case of oil measurements the hydrocarbon molecules cannot be removed by rinsing the sensor with clear water or by evaporating them in ambient air. It has to be regenerated by washing it with a high volatile solvent instead.  相似文献   

12.
Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.  相似文献   

13.
Biocides are used to protect buildings, boats, and other materials from microbial infestations. A huge variety of compounds are being used: isothiazolinones, e.g., to prevent bacterial growth in paints, triazines and phenylureas against algal growth on water exposed materials while carbamates are used against fungal investations. However these biocides can be leached from the respective materials. As these are very effective compounds it is important to know the concentrations of these biocides in the leachates as well as their leaching behaviour to assess their risk to the environment. In this study, a method for the determination of biocides from facade material run-off water by means of high performance liquid chromatography coupled to tandem mass spectrometry (HPLC–MS/MS) was developed. Due to the amphiphilic character and the expected varying pH-values in the samples, the extractions as well as the HPLC-method development proved to be demanding. The water samples (leachates) were buffered with a phosphate buffer to pH 7. As some of the biocides are very hydrophilic, different SPE cartridges were tested to identify the SPE material with the highest recovery rates for all compounds. For gaining a good separation, analyte trapping was performed on the HPLC column. Quantification was performed using a mass spectrometer in multi-reaction monitoring with two transitions per compound. The final recovery rates were conducted using a cartridge with a divenylbenzyl polymer sorbent. A combination of methanol and acetonitrile as eluents was used to reach recovery rates in the range of 70–100%. The limit of quantification for the compounds of interest ranged from 0.01 to 0.1 μg/L.  相似文献   

14.
Abstract

The work described in this paper shows how we have investigated the utility of polar polyimide sorbents for the collection of polar and non-polar volatile organic compounds in ambient air. The results indicate that supercritical carbon dioxide can be used to recover a variety of compounds with a wide range of volatilities from polyimide sorbents and that these compounds can be effectively collected onto an adsorbent micro-trap after the expansion of the fluid prior to thermal desorption gas chromatographic analysis. Molecular sieve 3A was used and found to have a very high capacity for removal of water from the supercritical fluid extract stream. The sieve tended to adsorb polar compounds in the absence of water; the presence of water sometimes reduced analyte adsorption. The method was used to collect, recover, and analyze volatile organic compounds from the air of a laboratory building and was shown to be quite sensitive for appropriate compounds.  相似文献   

15.
An automated sampling and enrichment apparatus coupled with a gas chromatography/mass spectrometry (GC/MS) technique was constructed for the analysis of ambient volatile organic compounds (VOCs). A sorbent trap was built within the system to perform on-line enrichment and thermal desorption of VOCs onto GC/MS. In order to improve analytical precision, calibration accuracy, and to safe-guard the long-term stability of this system, a mechanism to allow on-line internal standard (I.S.) addition to the air sample stream was configured within the sampling and enrichment apparatus. A sub-ppm (v/v) level standard gas mixture containing 1,4-fluorobenzene, chloropentafluorobenzene, 1-bromo-4-fluorobenzene was prepared from their pure forms. A minute amount of this I.S. gas was volumetrically mixed into the sample stream at the time of on-line enrichment of the air sample to compensate for measurement uncertainties. To assess the performance of this VOC GC/MS system, a gas mixture containing numerous VOCs at sub-ppb (v/v) level served as the ambient air sample. Various internal standard methods based on total ion count (TIC) and selective ion monitoring (SIM) modes were attempted to assess the improvement in analytical precision and accuracy. Precision was improved from 7-8% RSD without I.S. to 2-3% with I.S. for the 14 target VOCs. Uncertainties in the calibration curves were also improved with the adoption of I.S. by reducing the relative standard deviation of the slope (Sm%) by an average a factor of 4, and intercept (Sb%) by a factor of 2 for the 14 target VOCs.  相似文献   

16.
Caro J  Gallego M 《Talanta》2008,76(4):847-853
A sensitive and reliable method has been developed for the determination of trihalomethanes (THMs) in air samples through adsorption in sorbent tubes and thermal desorption (TD) of the compounds, followed by gas chromatography (GC)–mass spectrometry (MS) analysis. Three commercial sorbent materials were compared in terms of adsorption efficiency and breakthrough volume, finding Chromosorb 102 to be the most appropriate adsorbent for air sampling. The method allows us to reach detection limits of 0.03 ng (0.01 μg m−3 for 3 l of air), linear ranges from 0.1 to 2000 ng and specific uncertainties of ca. 5.0 ± 0.2 ng for all THMs. Several salts were tested to reduce water retention (from the humid air of an indoor swimming pool) at the sampling stage, Na2SO4 being the one that provides optimum efficiency. The method was validated by a new recovery study in which several tubes with and without adsorbent were spiked with THMs and analyzed by TD-GC/MS, recoveries ranging from 92% to 97% for all the compounds. Finally, the performance of the method was evaluated through the analysis of ambient air samples from an indoor swimming pool and alveolar air samples from swimmers to assess their THM uptake. THMs were found to be stable in the sorbent tubes for at least 1 month when stored at 4 °C.  相似文献   

17.
This article describes the optimisation and validation of an analytical method for the determination of volatile polyfluorinated alkyl substances (PFAS) in environmental air samples. Airborne fluorinated telomer alcohols (FTOHs) as well as fluorinated sulfonamides and sulfonamidoethanols (FOSAs/FOSEs) were enriched on glass-fibre filters (GFFs), polyurethane foams (PUFs) and XAD-2 resin by means of high-volume air samplers. Sensitive and selective determination was performed using gas chromatography/chemical ionisation–mass spectrometry (GC/CI–MS). Five mass-labelled internal standard (IS) compounds were applied to ensure the accuracy of the analytical results. No major blank problems were encountered. Recovery experiments were performed, showing losses of the most volatile compounds during extraction and extract concentration as well as strong signal enhancement for FOSEs due to matrix effects. Breakthrough experiments revealed losses of the most volatile FTOHs during sampling, while FOSAs/FOSEs were quantitatively retained. Both analyte losses and matrix effects could be remediated by application of adequate mass-labelled IS. Method quantification limits (MQLs) of the optimised method ranged from 0.2 to 2.5 pg/m3 for individual target compounds. As part of the method validation, an interlaboratory comparison of instrumental quantification methods was conducted. The applicability of the method was demonstrated by means of environmental air samples from an urban and a rural location in Northern Germany. Figure High-volume air sampling of volatile polyfluorinated alkyl substances using glass fibre filters and PUF/XAD-2 cartridges at a background monitoring site (Waldhof, Germany)  相似文献   

18.
毛细管色谱-质谱法测定了环境大气中挥发性污染物。用液氧冷冻法和常温吸附法(TenaxGC)分别采集大气样品,然后用两种系统进行浓缩,并进入毛细管色谱-质谱体系,完成了有机污染物的定性定量分析。解决了一些色谱-质谱联用中的问题。并且还讨论了无分流进样问题,比较了两种采样方法。用此方法测定了某炼油厂环境大气中的污染物。  相似文献   

19.
Described is a system that employs an online membrane introduction (MI) interface coupled with parallel flame ionization and electron capture detectors (FID/ECD). We report the use of a MIFID/ECD system as an online method to detect total volatile organic halides (ΣVOXs) and volatile organic compounds (ΣVOCs) as aggregate parameters in environmental water samples at sub parts-per-billion levels without the need for sample handling or analyte pre-concentration. The instrument provides rapid screening and real-time monitoring capabilities of important classes of water contaminants in a simple system without the vacuum requirements of MS detectors. Furthermore, the MIFID/ECD instrument was successfully employed as a real-time reaction monitor for the photodegradation of toluene by an advanced oxidation process and the formation of volatile disinfection byproducts in the chlorination of natural waters. The results of these experiments compare favorably to those obtained using membrane introduction mass spectrometry (MIMS).  相似文献   

20.
The potential use of ethanol as an internal standard (IS) for GC‐MS analysis was studied. The paper describes the analysis of spirit drinks and other alcoholic products which consist of a mixture of water, ethanol, and volatile compounds. In the suggested method, ethanol was employed as an IS for the common procedure of volatile compounds quantification. A number of standard solutions of nine compounds with different concentrations was prepared in a water‐ethanol matrix and measured with GC‐MS in the SIM mode. Two possible approaches were suggested to avoid detector saturation during ethanol detection. The first one consisted in using less abundant m/z 47 as quantifiers. These ions mainly correspond to unfragmented heavy ethanol molecules containing one 13C isotope. The second method consisted in reduction of the voltage of MS electron multiplier. The experiment also included the preparation and subsequent dilution of the standard solution and ethanol with water, which determined the linearity of the modified MS response relative to the ethanol content. Analysis of the obtained results revealed that volatile compounds can be successfully accurately determined with GC‐MS by employing ethanol as an IS. Application of the suggested method is not limited to the reported volatile compounds and alcoholic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号