首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic properties of the oxidation-reduction reaction between N-methylhydroxylamine (NMHAN) and vanadium(V) in nitric acid medium has been studied by spectrophotometry at 23.1 °C. The rate equation of the redox reaction was determined as -d[V(V)]/dt=k[V(V)] [NMHAN] by investigating the influence of concentration of NMHAN, acidity, ionic strength and the ratio of initial concentration of V(V) to NMHAN on the reaction. The rate constant of the reaction k> = 0.818±0.051 (mol/l)–1·s–1 at the ionic strength of 1.00 mol/l. The activation energy of the redox reaction was calculated to be 39.6 kJ/mol. A possibly radical mechanism of the redox reaction between NMHAN and V(V) has been suggested on the basis of electron spin resonance (ESR) spectra of nitroxyl radical, i.e., CH3
HO. It is helpful to understand and make the redox mechanism of NMHAN and Np(VI) clear in the reprocessing process of nuclear spent fuel.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
The kinetics of the oxidation-reduction reaction between N,N-diethylhydroxylamine (DEHAN) and vanadium(V) in nitric acid media have been studied by spectrophotometry at 13.5 °C. The rate equation of reaction was found to be -d[V(V)]/dt = k [V(V)] [DEHAN] by investigating the influence of the concentration, acidity, ionic strength and the effect of initial concentration on reaction. The rate constant of reaction k = 36.38 mol/l-2 ·min-1 when = 2.0 mol/l. A possible mechanism of reaction has been suggested on the basis of chemical analysis, 1 H NMR and ESR spectra.  相似文献   

3.
The kinetics of oxidation-reduction reaction between N,N-diethylhydroxylamine (DEHAN) and neptunium (VI) in nitric acid media has been studied by spectrophotometry at 25.2 °C. The rate equation is -d[Np(VI)/dt=k[Np(VI)][DEHAN]/[H+] found by investigating the influence of concentration, acidity, ionic strength and temperature on the reaction. The rate constant of the reaction k is 23.0±1.8 min–1 for = 2.0 mol/l. A possible mechanism of reaction has been suggested according to the ESR spectra of nitroxide radical produced in the DEHAN+V(V) system.  相似文献   

4.
The nature of the diperiodatocuprate(III) (DPC) species present in aqueous alkaline medium has been investigated by a kinetic and mechanistic study on the oxidation of iodide by DPC. The reaction kinetics were studied over the 1.0 × 10–3–0.1 mol dm–3 alkali range. The reaction order with respect to DPC, as well as iodide, was found to be unity when [DPC] [I]. In the 1.0 × 10–3–1.0 × 10–2 mol dm–3 alkali region, the rate decreased with increase in the alkali concentration and a plot of the pseudo-first order rate constant, k versus 1/[OH] was linear. Above 5.0 × 10–2 mol dm–3, a plot of k versus [OH] was also linear with a non-zero intercept. An increase in ionic strength of the reaction mixtures showed no effect on k at low alkali concentrations, whereas at high concentrations an increase in ionic strength leads to an increase in k. A plot of 1/k versus [periodate] was linear with an intercept in both alkali ranges. Iodine was found to accelerate the reaction at the three different alkali concentrations employed. The observed results indicated the following equilibria for DPC.[Cu(H2IO6)2]3- [Cu(H2IO6)]- + H2IO6 3- [Cu(H2IO6)] + OH- [Cu(HIO6)]- + H2OA suitable mechanism has been proposed on the basis of these equilibria to account for the kinetic results.  相似文献   

5.
A detailed investigation of the oxidation of L-ascorbic acid (H2A) by the title complex has been carried out using conventional spectrophotometry at 510 nm, over the ranges: 0.010 [ascorbate] T 0.045 mol dm–3, 3.62 pH 5.34, and 12.0 30.0 °C, 0.50 I 1.00 mol dm–3, and at ionic strength 0.60 mol dm–3 (NaClO4). The main reaction products are the bis(pyridine-2,6-dicarboxylate)cobaltate(II) ion and l-dehydroascorbic acid. The reaction rate is dependent on pH and the total ascorbate concentration in a complex manner, i.e., k obs = (k 1 K 1)[ascorbate] T /(K 1 + [H+]). The second order rate constant, k 1 [rate constant for the reaction of the cobalt(III) complex and HA] at 25.0 °C is 2.31 ± 0.13 mol–1 dm3 s–1. H = 30 ± 4 kJ mol–1 and S = –138 ± 13 J mol–1 K–1. K 1, the dissociation constant for H2A, was determined as 1.58 × 10–4 mol dm–3 at an ionic strength of 0.60 mol dm–3, while the self exchange rate constant, k 11 for the title complex, was determined as 1.28 × 10–5 dm3 mol–1 s–1. An outer-sphere electron transfer mechanism has been proposed.  相似文献   

6.
Kinetics of the surface redox reaction of alizarine red S adsorbed on mercury is measured by square-wave voltammetry. In 1 mol/l KNO3 buffered to pH 9.22, the standard reaction rate constant of the redox couple anthraquinone/anthrahydroquinone in the adsorbed alizarine red S molecule is ks=100 ±10 s-1 and the cathodic transfer coefficient is =0.4. At pH 2 in this medium ks is greater than 500 s-1.  相似文献   

7.
The dependence of L-glutamine protonation and its complexation with dioxovanadium(V) on ionic strength (I) is reported in sodium perchlorate solution as a background salt. The measurements have been performed at 25 ± 0.1°C and various ionic strengths in the range 0.1 to 1.0 mol/l, using a combination of potentiometric and spectrophotometric techniques. The overall analysis of the present and the previous data dealing with the determination of stability constants at different ionic strengths allowed us to obtain a general equation, by which a formation constant determined at a fixed ionic strength can be calculated, with a good approximation, at another ionic strength, if 0.1 I 1.0 mol/l (NaClO4).  相似文献   

8.
Guo  Yanhe  Ge  Qingchun  Lin  Hai  Lin  Huakuan  Zhu  Shourong 《Transition Metal Chemistry》2003,28(6):668-675
The ligands 1,10-N,N-bis(2-hydroxymethylbenzoyl)-1,4,7,10-tetraazadecane (L1) and 1,11-N,N-bis(2-hydroxymethylbenzoyl)-1,4,8,11-tetraazaundecane (L2) have been synthesized. The stability constants of NiII complexes of ligands L1 and L2 have been studied at 25 °C using pH titrations. The kinetics of general acid (HCl, 0.04–2.34 mol dm–3) or buffer (DEPP or DESPEN, 0.05 mol dm–3, pH 4.83–5.72)-catalyzed dissociation of these NiII complexes have been investigated at 25 °C using a stopped-flow spectrophotometer. The ionic strength of solution was controlled at I = 2.34 mol dm–3 (KCl + HCl) and I = 0.1 mol dm–3 (KNO3, buffer), respectively. The kinetic dissociation of NiII complexes catalyzed by HCl obeys the equilibrium k obs = k 1d + k 2H[H+], whereas in buffer solution the observed rate constant k obs = k d + k 1H[H+]. At pH < 1.5, both the proton-assisted and direct protonation pathways contribute to the rates, whereas solvation is the dominant pathway at pH > 6. In the 4.8–5.7 pH range, the complexes dissociate mainly through a proton-assisted pathway.  相似文献   

9.
Summary The reduction of chloro-, bromo- and iodopentacyanocobaltate(III) anions by aquatitanium(III) has been studied in aqueous solution with ionic strength, I = 1.0 mol dm-3 (LiCl, KBr or KI) at T = 25 °C. The dependence of the observed second-order rate constant, k obs, on [H+] has been investigated over the acid range 0.005–0.100 mol dm –3 and is of the general limiting form: k obs k 0 + k[H +] –1, where k 0 is appreciable in all cases and k is a composite rate constant. Using values of K a (associated with the TiIII hydrolytic equilibrium constant), obtained from the kinetic data for the TiIII/CoIII redox reactions, and comparison of the rate constants obtained with those for the corresponding VII reductions of the same CoIII complexes, it is concluded that the TiIII reductions of these halopentacyanocobaltate(III) complexes proceed via an outer-sphere mechanism.Author to whom all correspondence should be directed, who is presently on leave of absence from Obafemi Awolowo University.  相似文献   

10.
Direct electron transfer of myoglobin (Mb) was achieved by its direct immobilization on carbon ionic liquid electrode (CILE) with a conductive hydrophobic ionic liquid, 1‐butyl pyridinium hexaflourophosphate ([BuPy][PF6]) as binder for the first time. A pair of well‐defined, quasi‐reversible redox peaks was observed for Mb/CILE resulting from Mb redox of heme Fe(III)/Fe(II) redox couple in 0.1 M phosphate buffer solution (pH 7.0) with oxidation potential of ?0.277 V, reduction potential of ?0.388 V, the formal potential E°′ (E°′=(Epa+Epc)/2) at ?0.332 V and the peak‐to‐peak potential separation of 0.111 V at 0.5 V/s. The average surface coverage of the electroactive Mb immobilized on the electrode surface was calculated as 1.06±0.03×10?9 mol cm?2. Mb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards the reduction of H2O2. The cathodic peak current of Mb was linear to H2O2 concentration in the range from 6.0 μM to 160 μM with a detection limit of 2.0 μM (S/N=3). The apparent Michaelis–Menten constant (K and the electron transfer rate constant (ks) were estimated to be 140±1 μM and 2.8±0.1 s?1, respectively. The biosensor achieved the direct electrochemistry of Mb on CILE without the help of any supporting film or any electron mediator.  相似文献   

11.
The reaction between chromium(VI) and L-ascorbic acid has been studied by spectrophotometry in the presence of aqueous citrate buffers in the pH range 5.69–7.21. The reaction is slowed down by an increase of the ionic strength. At constant ionic strength, manganese(II) ion does not exert any appreciable inhibition effect on the reaction rate. The rate law found is where Kp is the equilibrium constant for protonation of chromate ion and kr is the rate constant for the redox reaction between the active forms of the oxidant (hydrogenchromate ion) and the reductant (L-hydrogenascorbate ion). The activation parameters associated with rate constant kr are Ea = 20.4 ± 0.9 kJ mol?1, ΔH = 17.9 ± 0.9 kJ mol?1, and ΔS=?152 ± 3 J K?1 mol?1. The reaction thermodynamic magnitudes associated with equilibrium constant Kp are ΔH0 = 16.5 ± 1.1 kJ mol?1 and ΔS0 = 167 ± 4 J K?1 mol?1. A mechanism in accordance with the experimental data is proposed for the reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Hydrolysis constants of protactinium(V) at tracer scale were deduced from the variations of partition coefficient of Pa(V) in the system: TTA/toluene/Pa(V)/H2O/H+/Na+/ClO 4, as a function of TTA and proton concentrations, ionic strength (0.1 3 M), and temperature (10 60°C). Extrapolations of theses constants to zero ionic strength were performed using the SIT model. Standard thermodynamic data (under atmospheric pressure) related to the two hydrolysis equilibria involved, were derived from the temperature dependence of the hydrolysis constants at infinite dilution.  相似文献   

13.
The influence of small concentrations (1—8 mmol L–1) of arenes (viz., hexafluorobenzene, chlorobenzene, benzene, toluene, and mesitylene) on the molecular weight, molecular weight distribution, and degree of functionalization by terminal olefin groups was studied for polymers prepared by low-temperature (–78 °C) isobutylene polymerization in n-hexane initiated by the MeOH—AlBr3 and ButCl—AlBr3 systems. The criteria extent of livingness k el/k p were calculated, where k el and k p are the rate constants of proton elimination and chain propagation, respectively. It was established that arenes can be involved in proton elimination from the growing carbocation, and their activity in this process increases with an increase in the basicity. Arenonium ions formed by the interaction of arenes with the components of the initiating system or with the growing ionic active centers can form complexes with counteranions, thus retarding proton elimination with the transfer to the counterion.  相似文献   

14.
The flash photolysis of azo?n?propane and of azoisopropane has been studied by kinetic spectroscopy. Transient absorption spectra in theregion of 220–260 nm have been assigned to the n-propyl and isopropyl radicals. For the n-propyl radical, ?max = 744 ± 39 l/mol cm at 245 nm and the rate constants for the mutual reactions were measured to be kc = (1.0 ± 0.1) × 1010 l/mol sec (combination) and kd = (1.9 ± 0.2) × 109 l/mol sec (disproportionation). For the isopropyl radical, ?max = 1280 ± 110 l/mol cm at 238 nm, with kc = (7.7 ± 1.6) × 109 l/mol sec and kd = (5.0 ± 1.2) × 109 l/mol sec The rate constant for the dissociation of the vibrationally excited triplet state of the azopropanes into radicals was measured from the variation in the quantum yield of radicals with pressure. For azo-n-propane k = (6.6 ± 1.3) × 107 sec?1, and for azoisopropane k = (1.6 ± 0.4) × 108 sec?1. Collisional deactivation of the vibrationally excited singlet and triplet states was found to occur on every collision for n-pentane; but nitrogen and argon were inefficient with a rate constant of 1.1 × 1010 l/mol sec. Spectra observed in the region of 220–260 and 370–400 nm areattributed to the cis isomers of the parent trans-azopropanes. These are formed, as permanent products, in increasing amounts as the pressure is increased.  相似文献   

15.
Summary The acid-catalysed decarboxylation of thecis-- andcis--[CoL(CO3)]+ complexes (L = 3,6-dimethyl-1,8-diamino-3,6-diazaoctane) have been studied over a range of HClO4 concentrations and the temperatures 25, 35 and 45° at I = 1.0 mol dm–3 (NaClO4). The rate expression takes the form kobs = k0 + k1[H+] where kobs is the observed first order rate constant at constant hydrogen ion concentration. The k0 term makes only a minor contribution to the overall reaction. Both complexes display solvent deuterium isotope effects ofca. 2.6 for the acid-catalysed decarboxylation, consistent with a rapid proton pre-equilibrium mechanism. Activation parameters have been determined and the mechanism of the reaction discussed. The magnitude of the solvent isotope effect is consistent with an A-1 type mechanism involving formation of a 5-coordinate intermediate.  相似文献   

16.
The kinetics of the deprotonation of tropaeolin O by OH? ions was investigated between 9° and 30°C, and by OD? ions at 24.7°C. The pH range was 10.7–12.5, and the ionic strength 0.1M throughout. All results were obtained by the temperature jump method. On the basis of a mechanism suggested earlier, rate constants k31 for the reaction between OL? and the internally bonded weak acid and k32 for the opening of the internal hydrogen bond were evaluated. The activation energies in ordinary water were found to be ΔH31 = 3.6 kcal/mol, ΔS31 = –19 eu, and ΔH32 = 27 kcal/mol, ΔS32 = 46 eu. The kinetic isotope effect was k31/k31 ~ 1.5 and k32/k32 ~ 0.9. The unusual results for reaction path are discussed in terms of solvent participation.  相似文献   

17.
The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H+, DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be −d[HNO2]/dt = k[DMHAN][HNO2], where k = 12.8 ± 1.0 (mol/L)−1 min−1 when the temperature is 18.5 °C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol−1. The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper.  相似文献   

18.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

19.
The rate of decomposition of tert-amyl nitrite (t-AmONO) has been studied in the absence (120°–155°C) and presence (160°–190°C) of nitric oxide. In the absence of nitric oxide for low concentrations of tert-amyl nitrite (~10?4M) and small extents of reaction (~1%), the first-order homogeneous rates of acetone formation are a direct measure of reaction (1) since k3a ? k2(NO): The rate of acetone formation is unaffected by the addition of large amounts of carbon tetrafluoride or isobutane (~1 atm) but is completely suppressed by large amounts of nitric oxide (1 atm 120°–155°C). The rate of reaction (1) is given by k1 = 1016.3±0.1 10?40.3±0.1/θ sec?1. Since (E1 + RT) and ΔH°1 are identical, both may be equated with D(t-AmO – NO) = 40.9 ± 0.1 kcal/mol and E2 = 0 ± 0.1 kcal/mol. The thermochemistry leads to the result that ΔH°f (t-AmO) = ?26.6 ± 1 kcal/mol. From ΔS°1 and A1, k2 is calculated to be 1010.5±0.2 M?1·sec?1. Although the addition of nitric oxide completely suppresses acetone formation at lower temperatures, it reappears at higher temperatures. This is a result of reaction (3a) now competing with reaction (2), thus allowing k3a to be determined. The rate constant for reaction (3a) is given by k3a = 1014.7 ± 0.2 10?14.3 ± 1/θ sec?1. There are two possible routes for the decomposition of the tert-amyloxyl radical: The dominating process is (3a). From the result at 160°C that k3a/k3b = 80, we arrive at the result k3b = 1015.0–18.7/θ sec?1. In addition to the products accounted for by the radical split (1), methyl-2-but-1-ene and methyl-2-but-2-ene are produced as a result of the six-centre elimination of nitrous acid (5): The ratio k5a/k5b was 0.35. Unlike tert-butyl where the rates of the two paths were comparable [(l) and (5)], here the total rate of the elimination process was only 0.5% that of the radical split (1). The reason for this is not clear.  相似文献   

20.
The reaction of the azide ion with the carbocation generated in the photolysis of 1,2,2,4,6-pentamethyl-1,2-dihydroquinoline in methanol was studied by pulse (conventional and laser) and steady-state photolysis techniques. The adduct of the azide ion was characterized by 1H NMR spectrum. Experimental results were interpreted taking into account a competition between the addition of methanol and azide ion to the carbocation. The rate constants for the reaction of the azide ion with the carbocation (k Az) were measured at 2—48 °C in a wide range of [N3 ]0 concentrations from 2·10–7 to 0.1 mol L–1 at different ionic strengths () of the solution. The resulting k Az values are more than an order of magnitude lower than those for diffusional-controlled reactions and vary from 3.2·108 ( = 0) to 4.5·106 L mol–1 s–1 ( = 0.8 mol L–1) in the presence of NaClO4 (18 °C). The activation energy of addition of the azide ion to the carbocation is 21 kJ mol–1, which is by 12 kJ mol–1 lower than the activation energy of the reaction of the carbocation with methanol. The features of the reaction under study are discussed from the viewpoint of the structures of carbocations generated in the photolysis of dihydroquinolines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号