首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although magic‐angle‐spinning (MAS) solid‐state NMR spectroscopy has been able to provide piercing atomic‐level insights into the structure and dynamics of various solids, the poor sensitivity has limited its widespread application, especially when the sample amount is limited. Herein, we demonstrate the feasibility of acquiring high S/N ratio natural‐abundance 13C NMR spectrum of a small amount of sample (≈2.0 mg) by using multiple‐contact cross polarization (MCP) under ultrafast MAS. As shown by our data from pharmaceutical compounds, the signal enhancement achieved depends on the number of CP contacts employed within a single scan, which depends on the T of protons. The use of MCP for fast 2D 1H/13C heteronuclear correlation experiments is also demonstrated. The significant signal enhancement can be greatly beneficial for the atomic‐resolution characterization of many types of crystalline solids including polymorphic drugs and nanomaterials.  相似文献   

2.
利用1H NMR,13C NMR研究了 2,2’-二(对羧酸苯氧基)-1,1’-联萘结构,并通过1H-1H COSY及13C-1H异核相关谱进一步确定了其1H谱和13C谱中各谱峰的归属,为同类化合物的表征提供了一个依据。  相似文献   

3.
利用~1HNMR,~(13)CNMR谱研究了2,2’-二(对胺苯甲酯)-1,1’联萘的结构,并通过~1H-~1HCOSY,~(13)C-~1H异核相关及~(13)C-~1H异核远程相关谱进一步地确定了~1H谱和~(13)C谱中各谱峰的归属,为同类化合物的表征提供了一个依据.  相似文献   

4.
Solid-state (1)H, (17)O MAS NMR, (1)H-(93)Nb TRAPDOR NMR, and (1)H double quantum 2D MAS NMR experiments were used to characterize the oxygen, water, and hydroxyl environments in the monoprotonated hexaniobate material, Na(7)[HNb(6)O(19)].15H(2)O. These solid-state NMR experiments demonstrate that the proton is located on the bridging oxygen of the [Nb(6)O(19)](8-) cluster. The solid-state NMR results also show that the NbOH protons are spatially isolated from similar protons, but undergo proton exchange with the water species located in the crystal lattice. On the basis of double quantum (1)H MAS NMR measurements, it was determined that the water species in the crystal lattice have restricted motional dynamics. Two-dimensional (1)H-(17)O MAS NMR correlation experiments show that these restricted waters are preferentially associated with the bridging oxygen. Solution (17)O NMR experiments show that the hydroxyl proton is also attached to the bridging oxygen for the compound in solution. In addition, solution (17)O NMR kinetic studies for the hexaniobate allowed the measurement of relative oxygen exchange rates between the bridging, terminal, and hydroxyl oxygen and the oxygen of the solvent as a function of pH and temperature. These NMR experiments are some of the first investigations into the proton location, oxygen and proton exchange processes, and water dynamics for a base stable polyoxoniobate material, and they provide insight into the chemistry and reactivity of these materials.  相似文献   

5.
王鹏  袁艺  张密林  朱果逸 《分析化学》1999,27(6):648-652
用一维NMR方法研究了电化学发光物质六氟磷酸二(2,2'-联吡啶)·(4,4'-二甲基-2,2'-联吡啶)合钌(Ⅱ)的立体结构,借助二维1H-1H COSY和1H-13C COSY实验技术对其氢谱和碳谱进行了完全的归属,并给出了其氢谱和碳谱的化学位移值.  相似文献   

6.
The low-temperature structure and dynamics of guest molecules of p-xylene incorporated in the isopropyl-calix[4] arene(2:1) p-xylene complex have been investigated by solid state nuclear magnetic resonance (NMR). Using one-dimensional 1H-decoupled 13C cross-polarization magic-angle-spinning (MAS) NMR and two-dimensional 1H-13C correlation spectroscopy, a full assignment of the 13C and 1H chemical shifts has been made. Using 1H NMR relaxometry, the effects of thermal history on the structure of the system have been investigated. Rapidly cooled samples have 1H spin-lattice relaxation times T1, which at low temperature (T<60 K) are typically two orders of magnitude faster than those observed in annealed samples which have been cooled slowly over many hours. In both forms, the low-temperature relaxation is driven by the dynamics of the weakly hindered methyl rotors of the p-xylene guest. The substantial difference in T1 is attributed in the rapidly cooled sample to disorder in the structure of the complex leading to a wide distribution of correlation times and methyl barrier heights. A comparison of the linewidths and splittings in the high resolution 13C MAS spectra of the two forms provides structural insight into the nature of the disorder. Using 1H field-cycling NMR relaxometry, the methyl dynamics of the p-xylene guest in the annealed sample have been fully characterized. The B-field dependence of the 1H T1 maps out the spectral density from which the correlation times are directly measured. The methyl barrier heights are determined from an analysis of the temperature dependence.  相似文献   

7.
Two-dimensional (1)H-(13)C MAS-J-HMQC solid-state NMR spectra of the two anomeric forms of maltose at natural abundance are presented. The experimental (1)H chemical shifts of the CH and CH(2) protons are assigned using first-principles chemical shift calculations that employ a plane-wave pseudopotential approach. Further calculations show that the calculated change in the (1)H chemical shift when comparing the full crystal and an isolated molecule is a quantitative measure of intermolecular C-H...O weak hydrogen bonding. Notably, a clear correlation between a large chemical shift change (up to 2 ppm) and both a short H...O distance (<2.7 A) and a CHO bond angle greater than 130 degrees is observed, thus showing that directionality is important in C-H...O hydrogen bonding.  相似文献   

8.
New approaches to the characterization of resonances in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei are explored, on the basis of the acquisition of heteronuclear separate-local-field spectra on rotating solids. In their two-dimensional version, these experiments correlate for each chemical site a second-order quadrupolar MAS powder pattern with the dipolar MAS sideband pattern to nearby heteronuclei. As 3D NMR sequences, such 2D anisotropic correlation spectra become separated for inequivalent chemical sites along a third, isotropic dimension. Extending in such manner separate-local-field NMR approaches to quadrupoles facilitates the assignment of inequivalent resonances to specific structural environments, and provides new tools for the investigation of dynamics in solids. Details about these 2D and 3D NMR experiments are given, and their application is illustrated with 1H-23Na recoupling experiments on mononucleotides possessing multiple bound cations.  相似文献   

9.
The IR and Raman spectra of the two polymorphic forms (58 degree- and 68 degree-forms) of cis-cinnamic acid were measured, and the spectral differences discussed on the basis of the crystal structures of the two forms. The IR bands related to the COOH group differ in the frequencies and band shape, reflecting differences in the hydrogen bonding between the two modifications. These spectra were compared with those of trans-cinnamic acid. The IR, Raman, and NMR spectra of the isotopic compounds, including the deuterated and 13C analogs of the cis and trans acids, were also recorded in the solid state and in solution to confirm the spectral assignments.  相似文献   

10.
In this investigation we report a complete assignment of (13)C, (1)H and (15)N solution and solid state chemical shifts of two bacterial photosynthetic pigments, bacteriochlorophyll (BChl) a and bacteriopheophytin (BPheo) a. Uniform stable-isotope labelling strategies were developed and applied to biosynthetic preparation of photosynthetic pigments, namely uniformly (13)C, (15)N labelled BChl a and BPheo a. Uniform stable-isotope labelling with (13)C, (15)N allowed performing the assignment of the (13)C, (15)N and (1)H resonances. The photosynthetic pigments were isolated from the biomass of photosynthetic bacteria Rhodopseudomonas palustris 17001 grown in uniformly (13)C (99%) and (15)N (98%) enriched medium. Both pigments were characterised by NMR in solution (acetone-d(6)) and by MAS NMR in solid state and their NMR resonances were recorded and assigned through standard liquid 2D (13)C-(13)C COSY, (1)H-(13)C HMQC, (1)H-(15)N HMBC and solid 2D (13)C-(13)C RFDR, (1)H-(13)C FSLG HETCOR and (1)H-(15)N HETCOR correlation techniques at 600 MHz and 750 MHz. The characterisation of pigments is of interest from biochemical to pharmaceutical industries, photosynthesis and food research.  相似文献   

11.
The structural characterization of organotin compounds that are grafted onto insoluble cross-linked polymers has necessarily been limited to elemental analysis, infrared spectroscopy, and in a few instances, solid-state NMR spectroscopy. This important bottleneck in the development of such grafted systems has been addressed by using high-resolution magic angle spinning (hr-MAS) NMR spectroscopy. The great potential of this technique is demonstrated through the structural characterization of diphenylbutyl-(3,4) and dichlorobutylstannanes (5,6), grafted onto divinylbenzene cross-linked polystyrene by means of a suitable linker (1, 2). First, conditions suitable for the application of hr-MAS NMR spectroscopy were identified by characterizing the (1)H resonance line widths of the grafted organotin moiety following swelling of the functionalized beads in eight representative solvents. The presence of clearly identifiable tin coupling patterns in both the 1D (13)C and 2D (1)H-(13)C HSQC spectra, and the incorporation of (119)Sn chemical shift and connectivity information from hr-MAS 1D (119)Sn and 2D (1)H-(119)Sn HMQC spectra, provide an unprecedented level of characterization of grafted organotins directly at the solid/liquid interface. In addition, the use of hr-MAS (119)Sn NMR for reaction monitoring, impurity detection, and quantification and assessment of the extent of coordination reveals its promise as a novel tool for the investigation of polymer-grafted organotin compounds. The approach described here should be sufficiently general for extension to a variety of other nuclei of interest in polymer-supported organometallic chemistry.  相似文献   

12.
Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable.  相似文献   

13.
(1)H and (13)C NMR data for N-substituted morpholines 1-20 were measured using 1D (DEPT, 1D NOE difference) and 2D NMR spectroscopic methods including (1)H-(1)H COSY, long-range (1)H-(1)H COSY, NOESY, gHMBC and gHMQC experiments. At room temperature the (1)H NMR spectra of protonated compounds 2 and 9 show the chair conformation for the morpholine ring. Spin-spin coupling constants were deduced from the resolution-enhanced proton spectra.  相似文献   

14.
A major challenge in magnetic nanoparticle synthesis and (bio)functionalization concerns the precise characterization of the nanoparticle surface ligands. We report the first analytical NMR investigation of organic ligands stably anchored on the surface of superparamagnetic nanoparticles (MNPs) through the development of a new experimental application of high-resolution magic-angle spinning (HRMAS). The conceptual advance here is that the HRMAS technique, already being used for MAS NMR analysis of gels and semisolid matrixes, enables the fine-structure-resolved characterization of even complex organic molecules bound to paramagnetic nanocrystals, such as nanosized iron oxides, by strongly decreasing the effects of paramagnetic disturbances. This method led to detail-rich, well-resolved (1)H NMR spectra, often with highly structured first-order couplings, essential in the interpretation of the data. This HRMAS application was first evaluated and optimized using simple ligands widely used as surfactants in MNP synthesis and conjugation. Next, the methodology was assessed through the structure determination of complex molecular architectures, such as those involved in MNP3 and MNP4. The comparison with conventional probes evidences that HRMAS makes it possible to work with considerably higher concentrations, thus avoiding the loss of structural information. Consistent 2D homonuclear (1)H- (1)H and (1)H- (13)C heteronuclear single-quantum coherence correlation spectra were also obtained, providing reliable elements on proton signal assignments and carbon characterization and opening the way to (13)C NMR determination. Notably, combining the experimental evidence from HRMAS (1)H NMR and diffusion-ordered spectroscopy performed on the hybrid nanoparticle dispersion confirmed that the ligands were tightly bound to the particle surface when they were dispersed in a ligand-free solvent, while they rapidly exchanged when an excess of free ligand was present in solution. In addition to HRMAS NMR, matrix-assisted laser desorption ionization time-of-flight MS analysis of modified MNPs proved very valuable in ligand mass identification, thus giving a sound support to NMR characterization achievements.  相似文献   

15.
The future evolution of benzoxazines and polybenzoxazines as advanced molecular, structural, functional, engineering, and newly commercial materials depends to a great extent on a deeper and more fundamental understanding at the molecular level. In this contribution, the field of benzoxazines is briefly introduced along with a more detailed review of ortho‐amide‐functional benzoxazines, which are the main subjects of this article. Provided in this article are the detailed and solid scientific evidences of intramolecular five‐membered‐ring hydrogen bonding, which is supposed to be responsible for the unique and characteristic features exhibited by this ever‐growing family of ortho‐functionalized benzoxazines. One‐dimensional (1D) 1H NMR spectroscopy was used to study various concentrations of benzoxazines in various solvents with different hydrogen‐bonding capability and at various temperatures to investigate in detail the nature of hydrogen bonding in both ortho‐amide‐functionalized benzoxazine and its para counterpart. These materials were further investigated by two‐dimensional (2D) 1H–1H nuclear Overhauser effect spectroscopy (NOESY) to verify and support the conclusions derived during the 1D 1H NMR experiments. Only highly purified single‐crystal benzoxazine samples have been used for this study to avoid additional interactions caused by any impurities.  相似文献   

16.
Thermotropic liquid crystalline compounds are of considerable importance due to their potential applications as advanced functional materials. A mesogen consisting of a terminal dimethylamino group, which can act as a charge-transfer donor, is particularly valuable for its light emission and nonlinear optical properties. In this study, we report the solid-state NMR investigation of the nematic behavior of one such novel mesogen (4-(dodecyloxy)benzoic acid 4-[((4-(dimethylamino)phenyl)imino)methyl]phenyl ester). Static and MAS experiments were performed on nematic and crystalline phases of the compound to measure (13)C chemical shift, (13)C-(1)H dipolar coupling, and (1)H chemical shift values. 2D chemical shift correlation of (1)H and (13)C nuclei confirmed the (13)C chemical shift values determined from 1D CPMAS experiments. The appearance of more peaks in both CPMAS and (13)C-(1)H HETCOR spectra of a crystalline solid suggests the heterogeneous orientations of phenyl rings of the mesogenic core. Variable-temperature experiments infer the motional averaging of these orientations before melting. The (1)H-(13)C dipolar coupling values, measured by 2D PITANSEMA experiments, were used to determine the orientational order of the mesogenic core at various temperatures. The influence of the linking unit and terminal substituents on the order parameter values of the mesogenic core is discussed.  相似文献   

17.
This study discusses the synthesis of two new 2‐hydroxyethyl substituted N‐heterocyclic carbene (NHC) precursors. The NHC precursors were prepared from 1‐(alkyl/aryl)benzimidazole and alkyl halides. They were characterized using 1H NMR, 13C NMR, FT‐IR, UV–Vis spectroscopy, and elemental analysis techniques. Molecular and crystal structures of 1 and 2 were determined using the single‐crystal X‐ray diffraction method. Crystal structure of the compounds features NHC precursors and chloride anions. Additionally in 2 , the asymmetric unit has a water molecule, which forms a tetrameric chloride‐hydrate assembly with the chloride anion. The chloride anions play an important role in the stabilization of crystal structures to form a two‐dimensional supramolecular architecture. The 3D Hirshfeld surface and the associated 2D fingerprint plots were also drawn to gain insights into the behavior of the interactions in the compounds.  相似文献   

18.
马来酸罗格列酮的核磁共振谱分析   总被引:2,自引:0,他引:2  
尹建元  李桂英  王恩思 《分析化学》2003,31(10):1178-1182
利用NMR、2D NMR及IR、UV、MS等实验技术详细研究了胰岛素增敏剂马来酸罗格列酮的波谱学特征。借助马来酸罗格列酮及罗格列酮的DEPT谱和罗格列酮的二维^1H--^1H COSY、^13C-^1H COSY对马来酸罗格列酮氢谱和碳谱进行了完全的归属,为该类化合物的结构解析提供了有益的分析依据。  相似文献   

19.
A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. The structure of these nanocomposite materials have been characterized using FT-IR, elemental analysis, XRD and solid state NMR techniques, including 19F magic-angle spinning (MAS) NMR, 19F NMR relaxation time measurements, 29Si MAS, 1H MAS, 1H-13C cross-polarization magic-angle spinning (CPMAS), and 1H-13C heteronuclear correlation (HETCOR) 2D NMR. The results showed that thermal stability of Nafion was improved moderately by the addition of dodecylamine modified MMT without intercalation. FT-IR and 29Si MAS NMR results indicated that dodecylamine modification did not result in obvious changes in the MMT lattice structure. The XRD results showed that the protonated dodecylamine has been embedded and intercalated into the MMT interlayers, whereas Nafion was not. Elemental analysis results also suggested that some dodecylamine was adsorbed on the surface of MMT. 1H-13C HETCOR 2D NMR experiment clearly indicated that strong electrostatic interactions were present between the NH+3 group of dodecylamine and the fluorine-containing groups (CF3, OCF2, and SCF2) of Nafion resin. Such electrostatic interactions are probably the major contributors for the improved thermal stability of the resultant composite materials.  相似文献   

20.
A survey is given about two-dimensional (2D) NMR experiments on solid polymers involving 2H- and 13C-NMR. 2D exchange NMR spectra of static samples directly reflect the distribution of rotational angles resulting from ultraslow molecular motions. Typical examples are the chain motion above the glass transition or rotations around a helix axis in semi-crystalline polymers. 2D-Magic angle spinning not only allows the detection of molecular order and motion. By combining rotor synchronized MAS with rotations in spin space the correlation of order and mobility can be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号