首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
M. Rajeswara Rao 《Tetrahedron》2010,66(9):1728-1162
3,5-Bis(trimethylsilylethynyl)-4,4-difluoro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene [BODIPY(CCTMS)2] has been synthesized by coupling of 3,5-dibromo-4,4-difluoro-8-(4-tolyl)-4-bora-3a,4a-diaza-s-indacene with trimethylsilylacetylene under pd(0) coupling conditions. The BODIPY(CCTMS)2 was used as a selective colourimetric and fluorescent chemodosimeter for fluoride ion, following the F ion induced cleavage of trimethylsilyl group, the protecting group of ethyne functionality by monitoring the changes in UV-vis and fluorescence properties. The dosimeter BODIPY(CCTMS)2 display clear changes in colour, absorption and emission bands selectively for F ion over other anions such as Cl, Br, I, ClO4 and HPO42−.  相似文献   

2.
A novel redox-active calix[4]arene-TTF 5 was prepared by the reaction of p-tert-butylcalix[4]arene 4 with the tosylated TTF 3 in the presence of cesium fluoride. The structure of the dyad 5 was identified by X-ray diffraction analysis, and the preliminary electrochemical properties of 5 were investigated by cyclic voltammetry (CV), for which two reversible one-electron waves were observed. Moreover, the UV-vis absorption spectra studies show that the dyad 5 undergoes progressive oxidation at the TTF moiety in presence of increasing amounts of Cu2+ or Hg2+.   相似文献   

3.
The sensing mechanism of a fluoride‐anion probe BODIPY‐amidothiourea ( 1c ) has been elucidated through the density functional theory (DFT) and time‐dependent density functional theory (TDDFT) calculations. The theoretical study indicates that in the DMSO/water mixtures the fluorescent sensing has been regulated by the fluoride complex that formed between the probe 1c /two water molecules and the fluoride anion, and the excited‐state intermolecular hydrogen bond (H‐B) plays an important role in the fluoride sensing mechanism. In the first excited state, the H‐Bs of the fluoride complex 1cFH2 are overall strengthened, which induces the weak fluorescence emission. In addition, molecular orbital analysis demonstrates that 1cFH2 has more obvious intramolecular charge transfer (ICT) character in the S1 state than 1cH2 formed between the probe 1c and two water molecules, which also gives reason to the weaker fluorescence intensity of 1cFH2 . Further, our calculated UV‐vis absorbance and fluorescence spectra are in accordance with the experimental measurements. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
We disclose two novel BODIPY dyes, which contain the bulky substituent, [(4-dimesitylboryl)phenyl]ethynyl at 2- and 2,6-positions. The steric bulkiness of the boryl group is effective to suppress the intermolecular interaction in the solid state and thus these two compounds display intense fluorescence not only in solution but also in the solid state. In addition, the BODIPY dyes display sensitive fluorescence responses to fluoride and cyanide anions through the complexation with the boron center of the boryl group and the subsequent decomposition of the BODIPY core, illustrating their potential uses for the fluorescence sensing of fluoride and cyanide ions.  相似文献   

5.
A set of linear and dissymmetric BODIPY‐bridged push–pull dyes are synthesized. The electron‐donating substituents are anisole and dialkylanilino groups. The strongly electron‐accepting moiety, a 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) group, is obtained by insertion of an electron‐rich ethyne into tetracyanoethylene. A nonlinear push–pull system is developed with a donor at the 5‐position of the BODIPY core and the acceptor at the 2‐position. All dyes are fully characterized and their electrochemical, linear and nonlinear optical properties are discussed. The linear optical properties of dialkylamino compounds show strong solvatochromic behavior and undergo drastic changes upon protonation. The strong push–pull systems are non‐fluorescent and the TCBD‐BODIPY dyes show diverse photochemistry and electrochemistry, with several reversible reduction waves for the tetracyanobutadiene moiety. The hyperpolarizability μβ of selected compounds is evaluated using the electric‐field‐induced second‐harmonic generation technique. Two of the TCBD‐BODIPY dyes show particularly high μβ (1.907 μm) values of 2050×10?48 and 5900×10?48 esu. In addition, one of these dyes shows a high NLO contrast upon protonation–deprotonation of the donor residue.  相似文献   

6.
Novel polyphenylacetylene ( P1 ) containing naphthalimides units in the side chain was designed and synthesized. The structure and properties of the polymer were characterized and evaluated by IR, NMR, UV, and PL. The measurements of sensing behavior to various halide anions, that is, F?, Cl?, Br?, and I?, reveal that the polymer is a ratiometric fluorescent chemosensors for fluoride ion. The polymer sensor shows spectral shifts and intensity changes in the presence of fluoride, in a wavelength‐ratiometric and ‐colorimetric manner, which can detect fluoride concentrations in range of 10–100 μM at visible wavelengths. The obvious colorless‐to‐yellow color change and blue‐to‐orange emission color change on the addition of fluoride ion are easily observed by naked eyes. It provides a feasible way to construct a ratiometric fluorescent chemosensors for fluoride ion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1544–1552, 2009  相似文献   

7.
A colorimetric sensor for fluoride ions based on a new sensing mechanism is reported. The colorimetric sensor contains an isomerizable enol–keto moiety as the recognition site and phenothiazine as chromogenic center. A color change visible to the naked eye is observed upon addition of fluoride ions to the solution of sensor 1 in aprotic solvents such as CHCl3 and MeCN. The sensor shows no colorimetric response for other halide ions. Enol‐keto tautomerization is proposed to be responsible for the anion sensing of 1 , based on UV/VIS absorption, 1H‐NMR, and single‐crystal structure analysis.  相似文献   

8.
Room‐temperature long‐lived near‐IR phosphorescence of boron‐dipyrromethene (BODIPY) was observed (λem=770 nm, ΦP=3.5 %, τP=128.4 μs). Our molecular‐design strategy is to attach PtII coordination centers directly onto the BODIPY π‐core using acetylide bonds, rather than on the periphery of the BODIPY core, thus maximizing the heavy‐atom effect of PtII. In this case, the intersystem crossing (ISC) is facilitated and the radiative decay of the T1 excited state of BODIPY is observed, that is, the phosphorescence of BODIPY. The complex shows strong absorption in the visible range (ε=53800 M ?1 cm?1 at 574 nm), which is rare for PtII–acetylide complexes. The complex is dual emissive with 3M LCT emission at 660 nm and the 3IL emission at 770 nm. The T1 excited state of the complex is mainly localized on the BODIPY moiety (i.e. 3IL state, as determined by steady‐state and time‐resolved spectroscopy, 77 K emission spectra, and spin‐density analysis). The strong visible‐light‐harvesting ability and long‐lived T1 excite state of the complex were used for triplet‐triplet annihilation based upconversion and an upconversion quantum yield of 5.2 % was observed. The overall upconversion capability (η=ε×ΦUC) of this complex is remarkable considering its strong absorption. The model complex, without the BODIPY moiety, gives no upconversion under the same experimental conditions. Our work paves the way for access to transition‐metal complexes that show strong absorption of visible light and long‐lived 3IL excited states, which are important for applications in photovoltaics, photocatalysis, and upconversions, etc.  相似文献   

9.
Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety ( DM-BDP-SAr and DM-BDP-R-SAr ) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes ( Lyso-S and Lyso-D ) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.  相似文献   

10.
The first three‐dimensional (3D) conductive single‐ion magnet (SIM), (TTF)2[Co(pdms)2] (TTF=tetrathiafulvalene and H2pdms=1,2‐bis(methanesulfonamido)benzene), was electrochemically synthesised and investigated structurally, physically, and theoretically. The similar oxidation potentials of neutral TTF and the molecular precursor [HNEt3]2[M(pdms)2] (M=Co, Zn) allow for multiple charge transfers (CTs) between the SIM donor [M(pdms)2]n? and the TTF.+ acceptor, as well as an intradonor CT from the pdms ligand to Co ion upon electrocrystallisation. Usually TTF functions as a donor, whereas in our system TTF is both a donor and an accepter because of the similar oxidation potentials. Furthermore, the [M(pdms)2]n? donor and TTF.+ acceptor are not segregated but strongly interact with each other, contrary to reported layered donor–acceptor electrical conductors. The strong intermolecular and intramolecular interactions, combined with CT, allow for relatively high electrical conductivity even down to very low temperatures. Furthermore, SIM behaviour with slow magnetic relaxation and opening of hysteresis loops was observed. (TTF)2[Co(pdms)2] ( 2‐Co ) is an excellent building block for preparing new conductive SIMs.  相似文献   

11.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

12.
A series of meso-dithiole and tetrathiafulvalene (TTF) dipyrromethanes have been prepared via the reaction of the appropriate aldehyde with either pyrrole or 3-ethyl-2,4-dimethyl-pyrrole under acid catalysis. Oxidation to the corresponding meso-dithiole dipyrrins is reported together with the formation of the metal chelate complexes (M=Zn, Cu, Ni) as well as the meso-dithiole boron-dipyrromethene (BODIPY). The molecular structures of these metal (Cu, Ni) and boron complexes are presented and discussed. According to a similar strategy the meso-TTF BODIPY is prepared and its photophysical properties are presented and compared with those of the meso-dithiole BODIPY.  相似文献   

13.
Droplet microfluidics is an enabling platform for high‐throughput screens, single‐cell studies, low‐volume chemical diagnostics, and microscale material syntheses. Analytical methods for real‐time and in situ detection of chemicals in the droplets will benefit these applications, but they remain limited. Reported herein is a novel heterogeneous chemical sensing strategy based on functionalization of the oil phase with rationally combined sensing reagents. Sub‐nanoliter oil segments containing pH‐sensitive fluorophores, ionophores, and ion‐exchangers enable highly selective and rapid fluorescence detection of physiologically important electrolytes (K+, Na+, and Cl?) and polyions (protamine) in sub‐nanoliter aqueous droplets. Electrolyte analysis in whole blood is demonstrated without suffering from optical interference from the sample matrix. Moreover, an oil phase doped with an aza‐BODIPY dye allows indication of H2O2 in the aqueous droplets, exemplifying sensing of targets beyond ionic species.  相似文献   

14.
Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn‐on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert‐Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride‐mediated cleavage of the Si? O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993‐5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells.  相似文献   

15.
《化学:亚洲杂志》2017,12(15):1927-1934
The role of fluorescent molecules in diagnosis, treatment as well as in biomedical research has great current medicinal significance and is the focus of concentrated effort across the scientific research spectrum. Related research continues to reveal new practical sensing systems that bear enhanced features for interfacing of substituted molecules with biological systems. As part of an effort to better understand chalcogenide systems, a new dithiomaleimide BODIPY ( BDP‐NGM ) probe has been designed, synthesized and characterized. The fluorescence of BDP‐NGM was quenched by the incorporation of [3,4‐bis (phenylthio)] on the maleimide‐4‐phenyl moiety which is, in turn, placed at the meso ‐position of the BODIPY system. The probe shows a turn‐on fluorescence response upon reaction with ONOO; mass spectral evidence reveals peaks in agreement with products involving oxidation of the sulfur groups to sulfone groups. An about 18.0‐fold emission intensity enhancement was found. By comparison, the emission signal from another ROS/RNS, superoxide, gave a modest turn on signal (≈5.0‐fold). The reaction is complete within 10 min, judging from the monitoring of the turn‐on fluorescence process; the detection limit was found to be 0.4 μm . BDP‐NGM can be used for the detection of ONOO under both acidic and basic conditions. Live cell imaging showed that the current probe can be used for the selective detection of ONOO in living systems.  相似文献   

16.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

17.
Hyperfine data and g factors are reported for the radical cations of tetrathiafulvalene (TTF; 1 ) and of its derivatives 2–13 . From the intense satellite spectra of 1 +– 13 + not only the coupling constants of the 33S isotopes in the TTF moiety could be determined, but also, in favourable cases, those of the 13C isotopes in the central double bond. The former values range from 0.370 ( 8 +) to 0.470 mT ( 4 +) and the latter from 0.255 ( 8 +) to 0.360 mT ( 4 +) in the radical cations of bis(ethylenedithio)-TTF ( 8 +) and tetracyano-TTF ( 4 +). The radical cation of TTF ( 1 +) exhibits intermediate values, 0.425 for the 33S and 0.285 mT for the 13C isotopes. The spin population in 1 +– 13 + resides, to a large extent, in the central S2C ? CS2 part of the π-system. It tends to increase (decrease) by substitution with electron-accepting (donating) groups in the 2,3,6,7-positions of TTF.  相似文献   

18.
2-Fluoro-1,3-thiazoles were rapidly and efficiently labeled with no-carrier-added fluorine-18 (t1/2 = 109.7 min) by treatment of readily prepared 2-halo precursors with cyclotron-produced [18F]fluoride ion. The [18F]2-fluoro-1,3-thiazolyl moiety constitutes a new and easily-labeled structural motif for prospective molecular imaging radiotracers.  相似文献   

19.
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor–acceptor (D‐A) substituted 1,2,3‐triazoles as conjugative π‐linkers between the alkali metal ion receptor N‐phenylaza‐[18]crown‐6 and different fluorophoric groups with different electron‐acceptor properties (4‐naphthalimide, meso‐phenyl‐BODIPY and 9‐anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge‐transfer (CT) type probes 1 , 2 and 7 , the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge‐separated states. In the presence of Na+ and K+ ICT is interrupted, which resulted in a lighting‐up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7 , which contains a 9‐anthracenyl moiety as the electron‐accepting fluorophore, is the only probe which retains light‐up features in water and works as a highly K+/Na+‐selective probe under simulated physiological conditions. Virtually decoupled BODIPY‐based 6 and photoinduced electron transfer (PET) type probes 3 – 5 , where the 10‐substituted anthracen‐9‐yl fluorophores are connected to the 1,2,3‐triazole through a methylene spacer, show strong ion‐induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3‐triazole fluoroionophores.  相似文献   

20.
Anion receptors employing two distinct sensory mechanisms are rare. Herein, we report the first examples of halogen-bonding porphyrin BODIPY [2]rotaxanes capable of both fluorescent and redox electrochemical sensing of anions. 1H NMR, UV/visible and electrochemical studies revealed rotaxane axle triazole group coordination to the zinc(II) metalloporphyrin-containing macrocycle component, serves to preorganise the rotaxane binding cavity and dramatically enhances anion binding affinities. Mechanically bonded, integrated-axle BODIPY and macrocycle strapped metalloporphyrin motifs enable the anion recognition event to be sensed by the significant quenching of the BODIPY fluorophore and cathodic perturbations of the metalloporphyrin P/P+. redox couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号